Metamath Proof Explorer


Theorem cdj3lem3

Description: Lemma for cdj3i . Value of the second-component function T . (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 A S
cdj3lem2.2 B S
cdj3lem3.3 T = x A + B ι w B | z A x = z + w
Assertion cdj3lem3 C A D B A B = 0 T C + D = D

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 A S
2 cdj3lem2.2 B S
3 cdj3lem3.3 T = x A + B ι w B | z A x = z + w
4 incom A B = B A
5 4 eqeq1i A B = 0 B A = 0
6 2 sheli D B D
7 1 sheli C A C
8 ax-hvcom D C D + C = C + D
9 6 7 8 syl2an D B C A D + C = C + D
10 9 fveq2d D B C A T D + C = T C + D
11 10 3adant3 D B C A B A = 0 T D + C = T C + D
12 2 1 shscomi B + A = A + B
13 2 sheli w B w
14 1 sheli z A z
15 ax-hvcom w z w + z = z + w
16 13 14 15 syl2an w B z A w + z = z + w
17 16 eqeq2d w B z A x = w + z x = z + w
18 17 rexbidva w B z A x = w + z z A x = z + w
19 18 riotabiia ι w B | z A x = w + z = ι w B | z A x = z + w
20 12 19 mpteq12i x B + A ι w B | z A x = w + z = x A + B ι w B | z A x = z + w
21 3 20 eqtr4i T = x B + A ι w B | z A x = w + z
22 2 1 21 cdj3lem2 D B C A B A = 0 T D + C = D
23 11 22 eqtr3d D B C A B A = 0 T C + D = D
24 5 23 syl3an3b D B C A A B = 0 T C + D = D
25 24 3com12 C A D B A B = 0 T C + D = D