Metamath Proof Explorer


Theorem cdj3lem2

Description: Lemma for cdj3i . Value of the first-component function S . (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 AS
cdj3lem2.2 BS
cdj3lem2.3 S=xA+BιzA|wBx=z+w
Assertion cdj3lem2 CADBAB=0SC+D=C

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 AS
2 cdj3lem2.2 BS
3 cdj3lem2.3 S=xA+BιzA|wBx=z+w
4 1 2 shsvai CADBC+DA+B
5 eqeq1 x=C+Dx=z+wC+D=z+w
6 5 rexbidv x=C+DwBx=z+wwBC+D=z+w
7 6 riotabidv x=C+DιzA|wBx=z+w=ιzA|wBC+D=z+w
8 riotaex ιzA|wBC+D=z+wV
9 7 3 8 fvmpt C+DA+BSC+D=ιzA|wBC+D=z+w
10 4 9 syl CADBSC+D=ιzA|wBC+D=z+w
11 10 3adant3 CADBAB=0SC+D=ιzA|wBC+D=z+w
12 eqid C+D=C+D
13 oveq2 w=DC+w=C+D
14 13 rspceeqv DBC+D=C+DwBC+D=C+w
15 12 14 mpan2 DBwBC+D=C+w
16 15 3ad2ant2 CADBAB=0wBC+D=C+w
17 simp1 CADBAB=0CA
18 1 2 cdjreui C+DA+BAB=0∃!zAwBC+D=z+w
19 4 18 stoic3 CADBAB=0∃!zAwBC+D=z+w
20 oveq1 z=Cz+w=C+w
21 20 eqeq2d z=CC+D=z+wC+D=C+w
22 21 rexbidv z=CwBC+D=z+wwBC+D=C+w
23 22 riota2 CA∃!zAwBC+D=z+wwBC+D=C+wιzA|wBC+D=z+w=C
24 17 19 23 syl2anc CADBAB=0wBC+D=C+wιzA|wBC+D=z+w=C
25 16 24 mpbid CADBAB=0ιzA|wBC+D=z+w=C
26 11 25 eqtrd CADBAB=0SC+D=C