Metamath Proof Explorer


Theorem cdj3lem2a

Description: Lemma for cdj3i . Closure of the first-component function S . (Contributed by NM, 25-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 A S
cdj3lem2.2 B S
cdj3lem2.3 S = x A + B ι z A | w B x = z + w
Assertion cdj3lem2a C A + B A B = 0 S C A

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 A S
2 cdj3lem2.2 B S
3 cdj3lem2.3 S = x A + B ι z A | w B x = z + w
4 1 2 shseli C A + B v A u B C = v + u
5 1 2 3 cdj3lem2 v A u B A B = 0 S v + u = v
6 simp1 v A u B A B = 0 v A
7 5 6 eqeltrd v A u B A B = 0 S v + u A
8 7 3expa v A u B A B = 0 S v + u A
9 fveq2 C = v + u S C = S v + u
10 9 eleq1d C = v + u S C A S v + u A
11 8 10 syl5ibr C = v + u v A u B A B = 0 S C A
12 11 expd C = v + u v A u B A B = 0 S C A
13 12 com13 A B = 0 v A u B C = v + u S C A
14 13 rexlimdvv A B = 0 v A u B C = v + u S C A
15 4 14 syl5bi A B = 0 C A + B S C A
16 15 impcom C A + B A B = 0 S C A