Metamath Proof Explorer


Theorem cdj3lem2a

Description: Lemma for cdj3i . Closure of the first-component function S . (Contributed by NM, 25-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 AS
cdj3lem2.2 BS
cdj3lem2.3 S=xA+BιzA|wBx=z+w
Assertion cdj3lem2a CA+BAB=0SCA

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 AS
2 cdj3lem2.2 BS
3 cdj3lem2.3 S=xA+BιzA|wBx=z+w
4 1 2 shseli CA+BvAuBC=v+u
5 1 2 3 cdj3lem2 vAuBAB=0Sv+u=v
6 simp1 vAuBAB=0vA
7 5 6 eqeltrd vAuBAB=0Sv+uA
8 7 3expa vAuBAB=0Sv+uA
9 fveq2 C=v+uSC=Sv+u
10 9 eleq1d C=v+uSCASv+uA
11 8 10 imbitrrid C=v+uvAuBAB=0SCA
12 11 expd C=v+uvAuBAB=0SCA
13 12 com13 AB=0vAuBC=v+uSCA
14 13 rexlimdvv AB=0vAuBC=v+uSCA
15 4 14 biimtrid AB=0CA+BSCA
16 15 impcom CA+BAB=0SCA