| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj3lem2.1 |  |-  A e. SH | 
						
							| 2 |  | cdj3lem2.2 |  |-  B e. SH | 
						
							| 3 |  | cdj3lem2.3 |  |-  S = ( x e. ( A +H B ) |-> ( iota_ z e. A E. w e. B x = ( z +h w ) ) ) | 
						
							| 4 | 1 2 | shseli |  |-  ( C e. ( A +H B ) <-> E. v e. A E. u e. B C = ( v +h u ) ) | 
						
							| 5 | 1 2 3 | cdj3lem2 |  |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) = v ) | 
						
							| 6 |  | simp1 |  |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> v e. A ) | 
						
							| 7 | 5 6 | eqeltrd |  |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) e. A ) | 
						
							| 8 | 7 | 3expa |  |-  ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) e. A ) | 
						
							| 9 |  | fveq2 |  |-  ( C = ( v +h u ) -> ( S ` C ) = ( S ` ( v +h u ) ) ) | 
						
							| 10 | 9 | eleq1d |  |-  ( C = ( v +h u ) -> ( ( S ` C ) e. A <-> ( S ` ( v +h u ) ) e. A ) ) | 
						
							| 11 | 8 10 | imbitrrid |  |-  ( C = ( v +h u ) -> ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( S ` C ) e. A ) ) | 
						
							| 12 | 11 | expd |  |-  ( C = ( v +h u ) -> ( ( v e. A /\ u e. B ) -> ( ( A i^i B ) = 0H -> ( S ` C ) e. A ) ) ) | 
						
							| 13 | 12 | com13 |  |-  ( ( A i^i B ) = 0H -> ( ( v e. A /\ u e. B ) -> ( C = ( v +h u ) -> ( S ` C ) e. A ) ) ) | 
						
							| 14 | 13 | rexlimdvv |  |-  ( ( A i^i B ) = 0H -> ( E. v e. A E. u e. B C = ( v +h u ) -> ( S ` C ) e. A ) ) | 
						
							| 15 | 4 14 | biimtrid |  |-  ( ( A i^i B ) = 0H -> ( C e. ( A +H B ) -> ( S ` C ) e. A ) ) | 
						
							| 16 | 15 | impcom |  |-  ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( S ` C ) e. A ) |