Metamath Proof Explorer


Theorem cdj3lem2a

Description: Lemma for cdj3i . Closure of the first-component function S . (Contributed by NM, 25-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1
|- A e. SH
cdj3lem2.2
|- B e. SH
cdj3lem2.3
|- S = ( x e. ( A +H B ) |-> ( iota_ z e. A E. w e. B x = ( z +h w ) ) )
Assertion cdj3lem2a
|- ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( S ` C ) e. A )

Proof

Step Hyp Ref Expression
1 cdj3lem2.1
 |-  A e. SH
2 cdj3lem2.2
 |-  B e. SH
3 cdj3lem2.3
 |-  S = ( x e. ( A +H B ) |-> ( iota_ z e. A E. w e. B x = ( z +h w ) ) )
4 1 2 shseli
 |-  ( C e. ( A +H B ) <-> E. v e. A E. u e. B C = ( v +h u ) )
5 1 2 3 cdj3lem2
 |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) = v )
6 simp1
 |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> v e. A )
7 5 6 eqeltrd
 |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) e. A )
8 7 3expa
 |-  ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) e. A )
9 fveq2
 |-  ( C = ( v +h u ) -> ( S ` C ) = ( S ` ( v +h u ) ) )
10 9 eleq1d
 |-  ( C = ( v +h u ) -> ( ( S ` C ) e. A <-> ( S ` ( v +h u ) ) e. A ) )
11 8 10 syl5ibr
 |-  ( C = ( v +h u ) -> ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( S ` C ) e. A ) )
12 11 expd
 |-  ( C = ( v +h u ) -> ( ( v e. A /\ u e. B ) -> ( ( A i^i B ) = 0H -> ( S ` C ) e. A ) ) )
13 12 com13
 |-  ( ( A i^i B ) = 0H -> ( ( v e. A /\ u e. B ) -> ( C = ( v +h u ) -> ( S ` C ) e. A ) ) )
14 13 rexlimdvv
 |-  ( ( A i^i B ) = 0H -> ( E. v e. A E. u e. B C = ( v +h u ) -> ( S ` C ) e. A ) )
15 4 14 syl5bi
 |-  ( ( A i^i B ) = 0H -> ( C e. ( A +H B ) -> ( S ` C ) e. A ) )
16 15 impcom
 |-  ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( S ` C ) e. A )