Step |
Hyp |
Ref |
Expression |
1 |
|
cdj3lem2.1 |
|- A e. SH |
2 |
|
cdj3lem2.2 |
|- B e. SH |
3 |
|
cdj3lem2.3 |
|- S = ( x e. ( A +H B ) |-> ( iota_ z e. A E. w e. B x = ( z +h w ) ) ) |
4 |
1 2
|
shseli |
|- ( C e. ( A +H B ) <-> E. v e. A E. u e. B C = ( v +h u ) ) |
5 |
1 2 3
|
cdj3lem2 |
|- ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) = v ) |
6 |
|
simp1 |
|- ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> v e. A ) |
7 |
5 6
|
eqeltrd |
|- ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) e. A ) |
8 |
7
|
3expa |
|- ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( S ` ( v +h u ) ) e. A ) |
9 |
|
fveq2 |
|- ( C = ( v +h u ) -> ( S ` C ) = ( S ` ( v +h u ) ) ) |
10 |
9
|
eleq1d |
|- ( C = ( v +h u ) -> ( ( S ` C ) e. A <-> ( S ` ( v +h u ) ) e. A ) ) |
11 |
8 10
|
syl5ibr |
|- ( C = ( v +h u ) -> ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( S ` C ) e. A ) ) |
12 |
11
|
expd |
|- ( C = ( v +h u ) -> ( ( v e. A /\ u e. B ) -> ( ( A i^i B ) = 0H -> ( S ` C ) e. A ) ) ) |
13 |
12
|
com13 |
|- ( ( A i^i B ) = 0H -> ( ( v e. A /\ u e. B ) -> ( C = ( v +h u ) -> ( S ` C ) e. A ) ) ) |
14 |
13
|
rexlimdvv |
|- ( ( A i^i B ) = 0H -> ( E. v e. A E. u e. B C = ( v +h u ) -> ( S ` C ) e. A ) ) |
15 |
4 14
|
syl5bi |
|- ( ( A i^i B ) = 0H -> ( C e. ( A +H B ) -> ( S ` C ) e. A ) ) |
16 |
15
|
impcom |
|- ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( S ` C ) e. A ) |