Step |
Hyp |
Ref |
Expression |
1 |
|
cdj3lem2.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
cdj3lem2.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
cdj3lem2.3 |
⊢ 𝑆 = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
4 |
1 2
|
shseli |
⊢ ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝐶 = ( 𝑣 +ℎ 𝑢 ) ) |
5 |
1 2 3
|
cdj3lem2 |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ ( 𝑣 +ℎ 𝑢 ) ) = 𝑣 ) |
6 |
|
simp1 |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → 𝑣 ∈ 𝐴 ) |
7 |
5 6
|
eqeltrd |
⊢ ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ ( 𝑣 +ℎ 𝑢 ) ) ∈ 𝐴 ) |
8 |
7
|
3expa |
⊢ ( ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ ( 𝑣 +ℎ 𝑢 ) ) ∈ 𝐴 ) |
9 |
|
fveq2 |
⊢ ( 𝐶 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑆 ‘ 𝐶 ) = ( 𝑆 ‘ ( 𝑣 +ℎ 𝑢 ) ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝐶 = ( 𝑣 +ℎ 𝑢 ) → ( ( 𝑆 ‘ 𝐶 ) ∈ 𝐴 ↔ ( 𝑆 ‘ ( 𝑣 +ℎ 𝑢 ) ) ∈ 𝐴 ) ) |
11 |
8 10
|
syl5ibr |
⊢ ( 𝐶 = ( 𝑣 +ℎ 𝑢 ) → ( ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ 𝐶 ) ∈ 𝐴 ) ) |
12 |
11
|
expd |
⊢ ( 𝐶 = ( 𝑣 +ℎ 𝑢 ) → ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → ( 𝑆 ‘ 𝐶 ) ∈ 𝐴 ) ) ) |
13 |
12
|
com13 |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → ( ( 𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐵 ) → ( 𝐶 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑆 ‘ 𝐶 ) ∈ 𝐴 ) ) ) |
14 |
13
|
rexlimdvv |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → ( ∃ 𝑣 ∈ 𝐴 ∃ 𝑢 ∈ 𝐵 𝐶 = ( 𝑣 +ℎ 𝑢 ) → ( 𝑆 ‘ 𝐶 ) ∈ 𝐴 ) ) |
15 |
4 14
|
syl5bi |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) → ( 𝑆 ‘ 𝐶 ) ∈ 𝐴 ) ) |
16 |
15
|
impcom |
⊢ ( ( 𝐶 ∈ ( 𝐴 +ℋ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ 𝐶 ) ∈ 𝐴 ) |