Metamath Proof Explorer


Theorem cdj3lem2a

Description: Lemma for cdj3i . Closure of the first-component function S . (Contributed by NM, 25-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 𝐴S
cdj3lem2.2 𝐵S
cdj3lem2.3 𝑆 = ( 𝑥 ∈ ( 𝐴 + 𝐵 ) ↦ ( 𝑧𝐴𝑤𝐵 𝑥 = ( 𝑧 + 𝑤 ) ) )
Assertion cdj3lem2a ( ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆𝐶 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 𝐴S
2 cdj3lem2.2 𝐵S
3 cdj3lem2.3 𝑆 = ( 𝑥 ∈ ( 𝐴 + 𝐵 ) ↦ ( 𝑧𝐴𝑤𝐵 𝑥 = ( 𝑧 + 𝑤 ) ) )
4 1 2 shseli ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ↔ ∃ 𝑣𝐴𝑢𝐵 𝐶 = ( 𝑣 + 𝑢 ) )
5 1 2 3 cdj3lem2 ( ( 𝑣𝐴𝑢𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆 ‘ ( 𝑣 + 𝑢 ) ) = 𝑣 )
6 simp1 ( ( 𝑣𝐴𝑢𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → 𝑣𝐴 )
7 5 6 eqeltrd ( ( 𝑣𝐴𝑢𝐵 ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆 ‘ ( 𝑣 + 𝑢 ) ) ∈ 𝐴 )
8 7 3expa ( ( ( 𝑣𝐴𝑢𝐵 ) ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆 ‘ ( 𝑣 + 𝑢 ) ) ∈ 𝐴 )
9 fveq2 ( 𝐶 = ( 𝑣 + 𝑢 ) → ( 𝑆𝐶 ) = ( 𝑆 ‘ ( 𝑣 + 𝑢 ) ) )
10 9 eleq1d ( 𝐶 = ( 𝑣 + 𝑢 ) → ( ( 𝑆𝐶 ) ∈ 𝐴 ↔ ( 𝑆 ‘ ( 𝑣 + 𝑢 ) ) ∈ 𝐴 ) )
11 8 10 syl5ibr ( 𝐶 = ( 𝑣 + 𝑢 ) → ( ( ( 𝑣𝐴𝑢𝐵 ) ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆𝐶 ) ∈ 𝐴 ) )
12 11 expd ( 𝐶 = ( 𝑣 + 𝑢 ) → ( ( 𝑣𝐴𝑢𝐵 ) → ( ( 𝐴𝐵 ) = 0 → ( 𝑆𝐶 ) ∈ 𝐴 ) ) )
13 12 com13 ( ( 𝐴𝐵 ) = 0 → ( ( 𝑣𝐴𝑢𝐵 ) → ( 𝐶 = ( 𝑣 + 𝑢 ) → ( 𝑆𝐶 ) ∈ 𝐴 ) ) )
14 13 rexlimdvv ( ( 𝐴𝐵 ) = 0 → ( ∃ 𝑣𝐴𝑢𝐵 𝐶 = ( 𝑣 + 𝑢 ) → ( 𝑆𝐶 ) ∈ 𝐴 ) )
15 4 14 syl5bi ( ( 𝐴𝐵 ) = 0 → ( 𝐶 ∈ ( 𝐴 + 𝐵 ) → ( 𝑆𝐶 ) ∈ 𝐴 ) )
16 15 impcom ( ( 𝐶 ∈ ( 𝐴 + 𝐵 ) ∧ ( 𝐴𝐵 ) = 0 ) → ( 𝑆𝐶 ) ∈ 𝐴 )