| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj3lem2.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | cdj3lem2.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | cdj3lem2.3 | ⊢ 𝑆  =  ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↦  ( ℩ 𝑧  ∈  𝐴 ∃ 𝑤  ∈  𝐵 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 4 | 1 2 | shseli | ⊢ ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ↔  ∃ 𝑣  ∈  𝐴 ∃ 𝑢  ∈  𝐵 𝐶  =  ( 𝑣  +ℎ  𝑢 ) ) | 
						
							| 5 | 1 2 3 | cdj3lem2 | ⊢ ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑆 ‘ ( 𝑣  +ℎ  𝑢 ) )  =  𝑣 ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  𝑣  ∈  𝐴 ) | 
						
							| 7 | 5 6 | eqeltrd | ⊢ ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐵  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑆 ‘ ( 𝑣  +ℎ  𝑢 ) )  ∈  𝐴 ) | 
						
							| 8 | 7 | 3expa | ⊢ ( ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑆 ‘ ( 𝑣  +ℎ  𝑢 ) )  ∈  𝐴 ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝐶  =  ( 𝑣  +ℎ  𝑢 )  →  ( 𝑆 ‘ 𝐶 )  =  ( 𝑆 ‘ ( 𝑣  +ℎ  𝑢 ) ) ) | 
						
							| 10 | 9 | eleq1d | ⊢ ( 𝐶  =  ( 𝑣  +ℎ  𝑢 )  →  ( ( 𝑆 ‘ 𝐶 )  ∈  𝐴  ↔  ( 𝑆 ‘ ( 𝑣  +ℎ  𝑢 ) )  ∈  𝐴 ) ) | 
						
							| 11 | 8 10 | imbitrrid | ⊢ ( 𝐶  =  ( 𝑣  +ℎ  𝑢 )  →  ( ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑆 ‘ 𝐶 )  ∈  𝐴 ) ) | 
						
							| 12 | 11 | expd | ⊢ ( 𝐶  =  ( 𝑣  +ℎ  𝑢 )  →  ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐵 )  →  ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ( 𝑆 ‘ 𝐶 )  ∈  𝐴 ) ) ) | 
						
							| 13 | 12 | com13 | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ( ( 𝑣  ∈  𝐴  ∧  𝑢  ∈  𝐵 )  →  ( 𝐶  =  ( 𝑣  +ℎ  𝑢 )  →  ( 𝑆 ‘ 𝐶 )  ∈  𝐴 ) ) ) | 
						
							| 14 | 13 | rexlimdvv | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ( ∃ 𝑣  ∈  𝐴 ∃ 𝑢  ∈  𝐵 𝐶  =  ( 𝑣  +ℎ  𝑢 )  →  ( 𝑆 ‘ 𝐶 )  ∈  𝐴 ) ) | 
						
							| 15 | 4 14 | biimtrid | ⊢ ( ( 𝐴  ∩  𝐵 )  =  0ℋ  →  ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  →  ( 𝑆 ‘ 𝐶 )  ∈  𝐴 ) ) | 
						
							| 16 | 15 | impcom | ⊢ ( ( 𝐶  ∈  ( 𝐴  +ℋ  𝐵 )  ∧  ( 𝐴  ∩  𝐵 )  =  0ℋ )  →  ( 𝑆 ‘ 𝐶 )  ∈  𝐴 ) |