Step |
Hyp |
Ref |
Expression |
1 |
|
cdj3lem2.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
cdj3lem2.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
cdj3lem2.3 |
⊢ 𝑆 = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐵 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
4 |
1 2
|
cdj3lem1 |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ( 𝐴 ∩ 𝐵 ) = 0ℋ ) |
5 |
1 2
|
shseli |
⊢ ( 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ↔ ∃ 𝑡 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑢 = ( 𝑡 +ℎ ℎ ) ) |
6 |
5
|
biimpi |
⊢ ( 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) → ∃ 𝑡 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑢 = ( 𝑡 +ℎ ℎ ) ) |
7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 𝑡 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑥 = 𝑡 → ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ) |
9 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑡 → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑡 → ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ) |
11 |
8 10
|
breq12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑦 = ℎ → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ ℎ ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑦 = ℎ → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑦 = ℎ → ( 𝑡 +ℎ 𝑦 ) = ( 𝑡 +ℎ ℎ ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑦 = ℎ → ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑦 = ℎ → ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
17 |
13 16
|
breq12d |
⊢ ( 𝑦 = ℎ → ( ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
18 |
11 17
|
rspc2v |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
19 |
1 2 3
|
cdj3lem2 |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) = 𝑡 ) |
20 |
19
|
3expa |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) = 𝑡 ) |
21 |
20
|
fveq2d |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) = 0ℋ ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) = ( normℎ ‘ 𝑡 ) ) |
22 |
21
|
ad2ant2r |
⊢ ( ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ∧ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) = ( normℎ ‘ 𝑡 ) ) |
23 |
2
|
sheli |
⊢ ( ℎ ∈ 𝐵 → ℎ ∈ ℋ ) |
24 |
|
normge0 |
⊢ ( ℎ ∈ ℋ → 0 ≤ ( normℎ ‘ ℎ ) ) |
25 |
23 24
|
syl |
⊢ ( ℎ ∈ 𝐵 → 0 ≤ ( normℎ ‘ ℎ ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → 0 ≤ ( normℎ ‘ ℎ ) ) |
27 |
1
|
sheli |
⊢ ( 𝑡 ∈ 𝐴 → 𝑡 ∈ ℋ ) |
28 |
|
normcl |
⊢ ( 𝑡 ∈ ℋ → ( normℎ ‘ 𝑡 ) ∈ ℝ ) |
29 |
27 28
|
syl |
⊢ ( 𝑡 ∈ 𝐴 → ( normℎ ‘ 𝑡 ) ∈ ℝ ) |
30 |
|
normcl |
⊢ ( ℎ ∈ ℋ → ( normℎ ‘ ℎ ) ∈ ℝ ) |
31 |
23 30
|
syl |
⊢ ( ℎ ∈ 𝐵 → ( normℎ ‘ ℎ ) ∈ ℝ ) |
32 |
|
addge01 |
⊢ ( ( ( normℎ ‘ 𝑡 ) ∈ ℝ ∧ ( normℎ ‘ ℎ ) ∈ ℝ ) → ( 0 ≤ ( normℎ ‘ ℎ ) ↔ ( normℎ ‘ 𝑡 ) ≤ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ) ) |
33 |
29 31 32
|
syl2an |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 0 ≤ ( normℎ ‘ ℎ ) ↔ ( normℎ ‘ 𝑡 ) ≤ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ) ) |
34 |
26 33
|
mpbid |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( normℎ ‘ 𝑡 ) ≤ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ) |
35 |
34
|
adantr |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ 𝑣 ∈ ℝ ) → ( normℎ ‘ 𝑡 ) ≤ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ) |
36 |
29
|
ad2antrr |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ 𝑣 ∈ ℝ ) → ( normℎ ‘ 𝑡 ) ∈ ℝ ) |
37 |
|
readdcl |
⊢ ( ( ( normℎ ‘ 𝑡 ) ∈ ℝ ∧ ( normℎ ‘ ℎ ) ∈ ℝ ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ∈ ℝ ) |
38 |
29 31 37
|
syl2an |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ∈ ℝ ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ 𝑣 ∈ ℝ ) → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ∈ ℝ ) |
40 |
|
hvaddcl |
⊢ ( ( 𝑡 ∈ ℋ ∧ ℎ ∈ ℋ ) → ( 𝑡 +ℎ ℎ ) ∈ ℋ ) |
41 |
27 23 40
|
syl2an |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑡 +ℎ ℎ ) ∈ ℋ ) |
42 |
|
normcl |
⊢ ( ( 𝑡 +ℎ ℎ ) ∈ ℋ → ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℝ ) |
43 |
41 42
|
syl |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℝ ) |
44 |
|
remulcl |
⊢ ( ( 𝑣 ∈ ℝ ∧ ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ∈ ℝ ) → ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
45 |
43 44
|
sylan2 |
⊢ ( ( 𝑣 ∈ ℝ ∧ ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ) → ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
46 |
45
|
ancoms |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ 𝑣 ∈ ℝ ) → ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) |
47 |
|
letr |
⊢ ( ( ( normℎ ‘ 𝑡 ) ∈ ℝ ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ∈ ℝ ∧ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ∈ ℝ ) → ( ( ( normℎ ‘ 𝑡 ) ≤ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ( normℎ ‘ 𝑡 ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
48 |
36 39 46 47
|
syl3anc |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ 𝑣 ∈ ℝ ) → ( ( ( normℎ ‘ 𝑡 ) ≤ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ( normℎ ‘ 𝑡 ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
49 |
35 48
|
mpand |
⊢ ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ 𝑣 ∈ ℝ ) → ( ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) → ( normℎ ‘ 𝑡 ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
50 |
49
|
imp |
⊢ ( ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ 𝑣 ∈ ℝ ) ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) → ( normℎ ‘ 𝑡 ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
51 |
50
|
an32s |
⊢ ( ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ∧ 𝑣 ∈ ℝ ) → ( normℎ ‘ 𝑡 ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
52 |
51
|
adantrl |
⊢ ( ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ∧ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) ) → ( normℎ ‘ 𝑡 ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
53 |
22 52
|
eqbrtrd |
⊢ ( ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ∧ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) ) → ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
54 |
|
2fveq3 |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) = ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
55 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( normℎ ‘ 𝑢 ) = ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) |
56 |
55
|
oveq2d |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( 𝑣 · ( normℎ ‘ 𝑢 ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
57 |
54 56
|
breq12d |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ↔ ( normℎ ‘ ( 𝑆 ‘ ( 𝑡 +ℎ ℎ ) ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
58 |
53 57
|
syl5ibrcom |
⊢ ( ( ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) ∧ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ∧ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) ) → ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
59 |
58
|
exp31 |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) → ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) ) |
60 |
18 59
|
syld |
⊢ ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) ) |
61 |
60
|
com14 |
⊢ ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) → ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) ) |
62 |
61
|
com4t |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( ( 𝑡 ∈ 𝐴 ∧ ℎ ∈ 𝐵 ) → ( 𝑢 = ( 𝑡 +ℎ ℎ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) ) |
63 |
62
|
rexlimdvv |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( ∃ 𝑡 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑢 = ( 𝑡 +ℎ ℎ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
64 |
6 63
|
syl5com |
⊢ ( 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) → ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
65 |
64
|
com3l |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) → ( 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) → ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
66 |
65
|
ralrimdv |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) → ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
67 |
66
|
anim2d |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = 0ℋ ∧ 𝑣 ∈ ℝ ) → ( ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
68 |
67
|
reximdva |
⊢ ( ( 𝐴 ∩ 𝐵 ) = 0ℋ → ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) ) |
69 |
4 68
|
mpcom |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑆 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |