| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdj3lem2.1 |
|
| 2 |
|
cdj3lem2.2 |
|
| 3 |
|
cdj3lem2.3 |
|
| 4 |
1 2
|
cdj3lem1 |
|
| 5 |
1 2
|
shseli |
|
| 6 |
5
|
biimpi |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
oveq1d |
|
| 9 |
|
fvoveq1 |
|
| 10 |
9
|
oveq2d |
|
| 11 |
8 10
|
breq12d |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
oveq2 |
|
| 15 |
14
|
fveq2d |
|
| 16 |
15
|
oveq2d |
|
| 17 |
13 16
|
breq12d |
|
| 18 |
11 17
|
rspc2v |
|
| 19 |
1 2 3
|
cdj3lem2 |
|
| 20 |
19
|
3expa |
|
| 21 |
20
|
fveq2d |
|
| 22 |
21
|
ad2ant2r |
|
| 23 |
2
|
sheli |
|
| 24 |
|
normge0 |
|
| 25 |
23 24
|
syl |
|
| 26 |
25
|
adantl |
|
| 27 |
1
|
sheli |
|
| 28 |
|
normcl |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
normcl |
|
| 31 |
23 30
|
syl |
|
| 32 |
|
addge01 |
|
| 33 |
29 31 32
|
syl2an |
|
| 34 |
26 33
|
mpbid |
|
| 35 |
34
|
adantr |
|
| 36 |
29
|
ad2antrr |
|
| 37 |
|
readdcl |
|
| 38 |
29 31 37
|
syl2an |
|
| 39 |
38
|
adantr |
|
| 40 |
|
hvaddcl |
|
| 41 |
27 23 40
|
syl2an |
|
| 42 |
|
normcl |
|
| 43 |
41 42
|
syl |
|
| 44 |
|
remulcl |
|
| 45 |
43 44
|
sylan2 |
|
| 46 |
45
|
ancoms |
|
| 47 |
|
letr |
|
| 48 |
36 39 46 47
|
syl3anc |
|
| 49 |
35 48
|
mpand |
|
| 50 |
49
|
imp |
|
| 51 |
50
|
an32s |
|
| 52 |
51
|
adantrl |
|
| 53 |
22 52
|
eqbrtrd |
|
| 54 |
|
2fveq3 |
|
| 55 |
|
fveq2 |
|
| 56 |
55
|
oveq2d |
|
| 57 |
54 56
|
breq12d |
|
| 58 |
53 57
|
syl5ibrcom |
|
| 59 |
58
|
exp31 |
|
| 60 |
18 59
|
syld |
|
| 61 |
60
|
com14 |
|
| 62 |
61
|
com4t |
|
| 63 |
62
|
rexlimdvv |
|
| 64 |
6 63
|
syl5com |
|
| 65 |
64
|
com3l |
|
| 66 |
65
|
ralrimdv |
|
| 67 |
66
|
anim2d |
|
| 68 |
67
|
reximdva |
|
| 69 |
4 68
|
mpcom |
|