Step |
Hyp |
Ref |
Expression |
1 |
|
cdj3lem2.1 |
|
2 |
|
cdj3lem2.2 |
|
3 |
|
cdj3lem2.3 |
|
4 |
1 2
|
cdj3lem1 |
|
5 |
1 2
|
shseli |
|
6 |
5
|
biimpi |
|
7 |
|
fveq2 |
|
8 |
7
|
oveq1d |
|
9 |
|
fvoveq1 |
|
10 |
9
|
oveq2d |
|
11 |
8 10
|
breq12d |
|
12 |
|
fveq2 |
|
13 |
12
|
oveq2d |
|
14 |
|
oveq2 |
|
15 |
14
|
fveq2d |
|
16 |
15
|
oveq2d |
|
17 |
13 16
|
breq12d |
|
18 |
11 17
|
rspc2v |
|
19 |
1 2 3
|
cdj3lem2 |
|
20 |
19
|
3expa |
|
21 |
20
|
fveq2d |
|
22 |
21
|
ad2ant2r |
|
23 |
2
|
sheli |
|
24 |
|
normge0 |
|
25 |
23 24
|
syl |
|
26 |
25
|
adantl |
|
27 |
1
|
sheli |
|
28 |
|
normcl |
|
29 |
27 28
|
syl |
|
30 |
|
normcl |
|
31 |
23 30
|
syl |
|
32 |
|
addge01 |
|
33 |
29 31 32
|
syl2an |
|
34 |
26 33
|
mpbid |
|
35 |
34
|
adantr |
|
36 |
29
|
ad2antrr |
|
37 |
|
readdcl |
|
38 |
29 31 37
|
syl2an |
|
39 |
38
|
adantr |
|
40 |
|
hvaddcl |
|
41 |
27 23 40
|
syl2an |
|
42 |
|
normcl |
|
43 |
41 42
|
syl |
|
44 |
|
remulcl |
|
45 |
43 44
|
sylan2 |
|
46 |
45
|
ancoms |
|
47 |
|
letr |
|
48 |
36 39 46 47
|
syl3anc |
|
49 |
35 48
|
mpand |
|
50 |
49
|
imp |
|
51 |
50
|
an32s |
|
52 |
51
|
adantrl |
|
53 |
22 52
|
eqbrtrd |
|
54 |
|
2fveq3 |
|
55 |
|
fveq2 |
|
56 |
55
|
oveq2d |
|
57 |
54 56
|
breq12d |
|
58 |
53 57
|
syl5ibrcom |
|
59 |
58
|
exp31 |
|
60 |
18 59
|
syld |
|
61 |
60
|
com14 |
|
62 |
61
|
com4t |
|
63 |
62
|
rexlimdvv |
|
64 |
6 63
|
syl5com |
|
65 |
64
|
com3l |
|
66 |
65
|
ralrimdv |
|
67 |
66
|
anim2d |
|
68 |
67
|
reximdva |
|
69 |
4 68
|
mpcom |
|