Metamath Proof Explorer


Theorem cdj3lem2b

Description: Lemma for cdj3i . The first-component function S is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 A S
cdj3lem2.2 B S
cdj3lem2.3 S = x A + B ι z A | w B x = z + w
Assertion cdj3lem2b v 0 < v x A y B norm x + norm y v norm x + y v 0 < v u A + B norm S u v norm u

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 A S
2 cdj3lem2.2 B S
3 cdj3lem2.3 S = x A + B ι z A | w B x = z + w
4 1 2 cdj3lem1 v 0 < v x A y B norm x + norm y v norm x + y A B = 0
5 1 2 shseli u A + B t A h B u = t + h
6 5 biimpi u A + B t A h B u = t + h
7 fveq2 x = t norm x = norm t
8 7 oveq1d x = t norm x + norm y = norm t + norm y
9 fvoveq1 x = t norm x + y = norm t + y
10 9 oveq2d x = t v norm x + y = v norm t + y
11 8 10 breq12d x = t norm x + norm y v norm x + y norm t + norm y v norm t + y
12 fveq2 y = h norm y = norm h
13 12 oveq2d y = h norm t + norm y = norm t + norm h
14 oveq2 y = h t + y = t + h
15 14 fveq2d y = h norm t + y = norm t + h
16 15 oveq2d y = h v norm t + y = v norm t + h
17 13 16 breq12d y = h norm t + norm y v norm t + y norm t + norm h v norm t + h
18 11 17 rspc2v t A h B x A y B norm x + norm y v norm x + y norm t + norm h v norm t + h
19 1 2 3 cdj3lem2 t A h B A B = 0 S t + h = t
20 19 3expa t A h B A B = 0 S t + h = t
21 20 fveq2d t A h B A B = 0 norm S t + h = norm t
22 21 ad2ant2r t A h B norm t + norm h v norm t + h A B = 0 v norm S t + h = norm t
23 2 sheli h B h
24 normge0 h 0 norm h
25 23 24 syl h B 0 norm h
26 25 adantl t A h B 0 norm h
27 1 sheli t A t
28 normcl t norm t
29 27 28 syl t A norm t
30 normcl h norm h
31 23 30 syl h B norm h
32 addge01 norm t norm h 0 norm h norm t norm t + norm h
33 29 31 32 syl2an t A h B 0 norm h norm t norm t + norm h
34 26 33 mpbid t A h B norm t norm t + norm h
35 34 adantr t A h B v norm t norm t + norm h
36 29 ad2antrr t A h B v norm t
37 readdcl norm t norm h norm t + norm h
38 29 31 37 syl2an t A h B norm t + norm h
39 38 adantr t A h B v norm t + norm h
40 hvaddcl t h t + h
41 27 23 40 syl2an t A h B t + h
42 normcl t + h norm t + h
43 41 42 syl t A h B norm t + h
44 remulcl v norm t + h v norm t + h
45 43 44 sylan2 v t A h B v norm t + h
46 45 ancoms t A h B v v norm t + h
47 letr norm t norm t + norm h v norm t + h norm t norm t + norm h norm t + norm h v norm t + h norm t v norm t + h
48 36 39 46 47 syl3anc t A h B v norm t norm t + norm h norm t + norm h v norm t + h norm t v norm t + h
49 35 48 mpand t A h B v norm t + norm h v norm t + h norm t v norm t + h
50 49 imp t A h B v norm t + norm h v norm t + h norm t v norm t + h
51 50 an32s t A h B norm t + norm h v norm t + h v norm t v norm t + h
52 51 adantrl t A h B norm t + norm h v norm t + h A B = 0 v norm t v norm t + h
53 22 52 eqbrtrd t A h B norm t + norm h v norm t + h A B = 0 v norm S t + h v norm t + h
54 2fveq3 u = t + h norm S u = norm S t + h
55 fveq2 u = t + h norm u = norm t + h
56 55 oveq2d u = t + h v norm u = v norm t + h
57 54 56 breq12d u = t + h norm S u v norm u norm S t + h v norm t + h
58 53 57 syl5ibrcom t A h B norm t + norm h v norm t + h A B = 0 v u = t + h norm S u v norm u
59 58 exp31 t A h B norm t + norm h v norm t + h A B = 0 v u = t + h norm S u v norm u
60 18 59 syld t A h B x A y B norm x + norm y v norm x + y A B = 0 v u = t + h norm S u v norm u
61 60 com14 u = t + h x A y B norm x + norm y v norm x + y A B = 0 v t A h B norm S u v norm u
62 61 com4t A B = 0 v t A h B u = t + h x A y B norm x + norm y v norm x + y norm S u v norm u
63 62 rexlimdvv A B = 0 v t A h B u = t + h x A y B norm x + norm y v norm x + y norm S u v norm u
64 6 63 syl5com u A + B A B = 0 v x A y B norm x + norm y v norm x + y norm S u v norm u
65 64 com3l A B = 0 v x A y B norm x + norm y v norm x + y u A + B norm S u v norm u
66 65 ralrimdv A B = 0 v x A y B norm x + norm y v norm x + y u A + B norm S u v norm u
67 66 anim2d A B = 0 v 0 < v x A y B norm x + norm y v norm x + y 0 < v u A + B norm S u v norm u
68 67 reximdva A B = 0 v 0 < v x A y B norm x + norm y v norm x + y v 0 < v u A + B norm S u v norm u
69 4 68 mpcom v 0 < v x A y B norm x + norm y v norm x + y v 0 < v u A + B norm S u v norm u