Metamath Proof Explorer


Theorem cdj3lem3a

Description: Lemma for cdj3i . Closure of the second-component function T . (Contributed by NM, 26-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 AS
cdj3lem2.2 BS
cdj3lem3.3 T=xA+BιwB|zAx=z+w
Assertion cdj3lem3a CA+BAB=0TCB

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 AS
2 cdj3lem2.2 BS
3 cdj3lem3.3 T=xA+BιwB|zAx=z+w
4 1 2 shseli CA+BvAuBC=v+u
5 1 2 3 cdj3lem3 vAuBAB=0Tv+u=u
6 simp2 vAuBAB=0uB
7 5 6 eqeltrd vAuBAB=0Tv+uB
8 7 3expa vAuBAB=0Tv+uB
9 fveq2 C=v+uTC=Tv+u
10 9 eleq1d C=v+uTCBTv+uB
11 8 10 imbitrrid C=v+uvAuBAB=0TCB
12 11 expd C=v+uvAuBAB=0TCB
13 12 com13 AB=0vAuBC=v+uTCB
14 13 rexlimdvv AB=0vAuBC=v+uTCB
15 4 14 biimtrid AB=0CA+BTCB
16 15 impcom CA+BAB=0TCB