Metamath Proof Explorer


Theorem cdj3lem3a

Description: Lemma for cdj3i . Closure of the second-component function T . (Contributed by NM, 26-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 A S
cdj3lem2.2 B S
cdj3lem3.3 T = x A + B ι w B | z A x = z + w
Assertion cdj3lem3a C A + B A B = 0 T C B

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 A S
2 cdj3lem2.2 B S
3 cdj3lem3.3 T = x A + B ι w B | z A x = z + w
4 1 2 shseli C A + B v A u B C = v + u
5 1 2 3 cdj3lem3 v A u B A B = 0 T v + u = u
6 simp2 v A u B A B = 0 u B
7 5 6 eqeltrd v A u B A B = 0 T v + u B
8 7 3expa v A u B A B = 0 T v + u B
9 fveq2 C = v + u T C = T v + u
10 9 eleq1d C = v + u T C B T v + u B
11 8 10 syl5ibr C = v + u v A u B A B = 0 T C B
12 11 expd C = v + u v A u B A B = 0 T C B
13 12 com13 A B = 0 v A u B C = v + u T C B
14 13 rexlimdvv A B = 0 v A u B C = v + u T C B
15 4 14 syl5bi A B = 0 C A + B T C B
16 15 impcom C A + B A B = 0 T C B