Metamath Proof Explorer


Theorem cdj3lem3a

Description: Lemma for cdj3i . Closure of the second-component function T . (Contributed by NM, 26-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1
|- A e. SH
cdj3lem2.2
|- B e. SH
cdj3lem3.3
|- T = ( x e. ( A +H B ) |-> ( iota_ w e. B E. z e. A x = ( z +h w ) ) )
Assertion cdj3lem3a
|- ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( T ` C ) e. B )

Proof

Step Hyp Ref Expression
1 cdj3lem2.1
 |-  A e. SH
2 cdj3lem2.2
 |-  B e. SH
3 cdj3lem3.3
 |-  T = ( x e. ( A +H B ) |-> ( iota_ w e. B E. z e. A x = ( z +h w ) ) )
4 1 2 shseli
 |-  ( C e. ( A +H B ) <-> E. v e. A E. u e. B C = ( v +h u ) )
5 1 2 3 cdj3lem3
 |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( T ` ( v +h u ) ) = u )
6 simp2
 |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> u e. B )
7 5 6 eqeltrd
 |-  ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( T ` ( v +h u ) ) e. B )
8 7 3expa
 |-  ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( T ` ( v +h u ) ) e. B )
9 fveq2
 |-  ( C = ( v +h u ) -> ( T ` C ) = ( T ` ( v +h u ) ) )
10 9 eleq1d
 |-  ( C = ( v +h u ) -> ( ( T ` C ) e. B <-> ( T ` ( v +h u ) ) e. B ) )
11 8 10 syl5ibr
 |-  ( C = ( v +h u ) -> ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( T ` C ) e. B ) )
12 11 expd
 |-  ( C = ( v +h u ) -> ( ( v e. A /\ u e. B ) -> ( ( A i^i B ) = 0H -> ( T ` C ) e. B ) ) )
13 12 com13
 |-  ( ( A i^i B ) = 0H -> ( ( v e. A /\ u e. B ) -> ( C = ( v +h u ) -> ( T ` C ) e. B ) ) )
14 13 rexlimdvv
 |-  ( ( A i^i B ) = 0H -> ( E. v e. A E. u e. B C = ( v +h u ) -> ( T ` C ) e. B ) )
15 4 14 syl5bi
 |-  ( ( A i^i B ) = 0H -> ( C e. ( A +H B ) -> ( T ` C ) e. B ) )
16 15 impcom
 |-  ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( T ` C ) e. B )