| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdj3lem2.1 |
|- A e. SH |
| 2 |
|
cdj3lem2.2 |
|- B e. SH |
| 3 |
|
cdj3lem3.3 |
|- T = ( x e. ( A +H B ) |-> ( iota_ w e. B E. z e. A x = ( z +h w ) ) ) |
| 4 |
1 2
|
shseli |
|- ( C e. ( A +H B ) <-> E. v e. A E. u e. B C = ( v +h u ) ) |
| 5 |
1 2 3
|
cdj3lem3 |
|- ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( T ` ( v +h u ) ) = u ) |
| 6 |
|
simp2 |
|- ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> u e. B ) |
| 7 |
5 6
|
eqeltrd |
|- ( ( v e. A /\ u e. B /\ ( A i^i B ) = 0H ) -> ( T ` ( v +h u ) ) e. B ) |
| 8 |
7
|
3expa |
|- ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( T ` ( v +h u ) ) e. B ) |
| 9 |
|
fveq2 |
|- ( C = ( v +h u ) -> ( T ` C ) = ( T ` ( v +h u ) ) ) |
| 10 |
9
|
eleq1d |
|- ( C = ( v +h u ) -> ( ( T ` C ) e. B <-> ( T ` ( v +h u ) ) e. B ) ) |
| 11 |
8 10
|
imbitrrid |
|- ( C = ( v +h u ) -> ( ( ( v e. A /\ u e. B ) /\ ( A i^i B ) = 0H ) -> ( T ` C ) e. B ) ) |
| 12 |
11
|
expd |
|- ( C = ( v +h u ) -> ( ( v e. A /\ u e. B ) -> ( ( A i^i B ) = 0H -> ( T ` C ) e. B ) ) ) |
| 13 |
12
|
com13 |
|- ( ( A i^i B ) = 0H -> ( ( v e. A /\ u e. B ) -> ( C = ( v +h u ) -> ( T ` C ) e. B ) ) ) |
| 14 |
13
|
rexlimdvv |
|- ( ( A i^i B ) = 0H -> ( E. v e. A E. u e. B C = ( v +h u ) -> ( T ` C ) e. B ) ) |
| 15 |
4 14
|
biimtrid |
|- ( ( A i^i B ) = 0H -> ( C e. ( A +H B ) -> ( T ` C ) e. B ) ) |
| 16 |
15
|
impcom |
|- ( ( C e. ( A +H B ) /\ ( A i^i B ) = 0H ) -> ( T ` C ) e. B ) |