| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdj3lem2.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | cdj3lem2.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | cdj3lem3.3 | ⊢ 𝑇  =  ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 4 | 2 1 | shscomi | ⊢ ( 𝐵  +ℋ  𝐴 )  =  ( 𝐴  +ℋ  𝐵 ) | 
						
							| 5 | 2 | sheli | ⊢ ( 𝑤  ∈  𝐵  →  𝑤  ∈   ℋ ) | 
						
							| 6 | 1 | sheli | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈   ℋ ) | 
						
							| 7 |  | ax-hvcom | ⊢ ( ( 𝑤  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( 𝑤  +ℎ  𝑧 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 8 | 5 6 7 | syl2an | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 )  →  ( 𝑤  +ℎ  𝑧 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 9 | 8 | eqeq2d | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥  =  ( 𝑤  +ℎ  𝑧 )  ↔  𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 10 | 9 | rexbidva | ⊢ ( 𝑤  ∈  𝐵  →  ( ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑤  +ℎ  𝑧 )  ↔  ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 11 | 10 | riotabiia | ⊢ ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑤  +ℎ  𝑧 ) )  =  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 12 | 4 11 | mpteq12i | ⊢ ( 𝑥  ∈  ( 𝐵  +ℋ  𝐴 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑤  +ℎ  𝑧 ) ) )  =  ( 𝑥  ∈  ( 𝐴  +ℋ  𝐵 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑧  +ℎ  𝑤 ) ) ) | 
						
							| 13 | 3 12 | eqtr4i | ⊢ 𝑇  =  ( 𝑥  ∈  ( 𝐵  +ℋ  𝐴 )  ↦  ( ℩ 𝑤  ∈  𝐵 ∃ 𝑧  ∈  𝐴 𝑥  =  ( 𝑤  +ℎ  𝑧 ) ) ) | 
						
							| 14 | 2 1 13 | cdj3lem2b | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐵  +ℋ  𝐴 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑥  =  𝑡  →  ( normℎ ‘ 𝑥 )  =  ( normℎ ‘ 𝑡 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑥  =  𝑡  →  ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ 𝑦 ) ) ) | 
						
							| 17 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑡  →  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) )  =  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑥  =  𝑡  →  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  =  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) ) ) | 
						
							| 19 | 16 18 | breq12d | ⊢ ( 𝑥  =  𝑡  →  ( ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑦  =  ℎ  →  ( normℎ ‘ 𝑦 )  =  ( normℎ ‘ ℎ ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑦  =  ℎ  →  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑦  =  ℎ  →  ( 𝑡  +ℎ  𝑦 )  =  ( 𝑡  +ℎ  ℎ ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝑦  =  ℎ  →  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) )  =  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑦  =  ℎ  →  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) )  =  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 25 | 21 24 | breq12d | ⊢ ( 𝑦  =  ℎ  →  ( ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 26 | 19 25 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 27 |  | ralcom | ⊢ ( ∀ 𝑡  ∈  𝐴 ∀ ℎ  ∈  𝐵 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ↔  ∀ ℎ  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 28 | 2 | sheli | ⊢ ( 𝑥  ∈  𝐵  →  𝑥  ∈   ℋ ) | 
						
							| 29 |  | normcl | ⊢ ( 𝑥  ∈   ℋ  →  ( normℎ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 30 | 28 29 | syl | ⊢ ( 𝑥  ∈  𝐵  →  ( normℎ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 31 | 30 | recnd | ⊢ ( 𝑥  ∈  𝐵  →  ( normℎ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 32 | 1 | sheli | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈   ℋ ) | 
						
							| 33 |  | normcl | ⊢ ( 𝑦  ∈   ℋ  →  ( normℎ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝑦  ∈  𝐴  →  ( normℎ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( 𝑦  ∈  𝐴  →  ( normℎ ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 36 |  | addcom | ⊢ ( ( ( normℎ ‘ 𝑥 )  ∈  ℂ  ∧  ( normℎ ‘ 𝑦 )  ∈  ℂ )  →  ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 37 | 31 35 36 | syl2an | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  →  ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  =  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑥 ) ) ) | 
						
							| 38 |  | ax-hvcom | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 39 | 28 32 38 | syl2an | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  →  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) )  =  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  →  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  =  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) ) ) ) | 
						
							| 42 | 37 41 | breq12d | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐴 )  →  ( ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑥 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) ) ) ) ) | 
						
							| 43 | 42 | ralbidva | ⊢ ( 𝑥  ∈  𝐵  →  ( ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑥 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) ) ) ) ) | 
						
							| 44 | 43 | ralbiia | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑥 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) ) ) ) | 
						
							| 45 |  | fveq2 | ⊢ ( 𝑥  =  ℎ  →  ( normℎ ‘ 𝑥 )  =  ( normℎ ‘ ℎ ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑥  =  ℎ  →  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑥 ) )  =  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ℎ ) ) ) | 
						
							| 47 |  | oveq2 | ⊢ ( 𝑥  =  ℎ  →  ( 𝑦  +ℎ  𝑥 )  =  ( 𝑦  +ℎ  ℎ ) ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( 𝑥  =  ℎ  →  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) )  =  ( normℎ ‘ ( 𝑦  +ℎ  ℎ ) ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( 𝑥  =  ℎ  →  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) ) )  =  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  ℎ ) ) ) ) | 
						
							| 50 | 46 49 | breq12d | ⊢ ( 𝑥  =  ℎ  →  ( ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑥 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) ) )  ↔  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  ℎ ) ) ) ) ) | 
						
							| 51 |  | fveq2 | ⊢ ( 𝑦  =  𝑡  →  ( normℎ ‘ 𝑦 )  =  ( normℎ ‘ 𝑡 ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝑦  =  𝑡  →  ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ℎ ) )  =  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) ) ) | 
						
							| 53 |  | fvoveq1 | ⊢ ( 𝑦  =  𝑡  →  ( normℎ ‘ ( 𝑦  +ℎ  ℎ ) )  =  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝑦  =  𝑡  →  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  ℎ ) ) )  =  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 55 | 52 54 | breq12d | ⊢ ( 𝑦  =  𝑡  →  ( ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  ℎ ) ) )  ↔  ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) ) | 
						
							| 56 | 50 55 | cbvral2vw | ⊢ ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑦 )  +  ( normℎ ‘ 𝑥 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑦  +ℎ  𝑥 ) ) )  ↔  ∀ ℎ  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) ) ) | 
						
							| 57 | 44 56 | bitr2i | ⊢ ( ∀ ℎ  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( normℎ ‘ 𝑡 )  +  ( normℎ ‘ ℎ ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑡  +ℎ  ℎ ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) | 
						
							| 58 | 26 27 57 | 3bitri | ⊢ ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) | 
						
							| 59 | 58 | anbi2i | ⊢ ( ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  ↔  ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) | 
						
							| 60 | 59 | rexbii | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  ↔  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐴 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) ) ) | 
						
							| 61 | 1 2 | shscomi | ⊢ ( 𝐴  +ℋ  𝐵 )  =  ( 𝐵  +ℋ  𝐴 ) | 
						
							| 62 | 61 | raleqi | ⊢ ( ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) )  ↔  ∀ 𝑢  ∈  ( 𝐵  +ℋ  𝐴 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) | 
						
							| 63 | 62 | anbi2i | ⊢ ( ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) )  ↔  ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐵  +ℋ  𝐴 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 64 | 63 | rexbii | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) )  ↔  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐵  +ℋ  𝐴 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) ) | 
						
							| 65 | 14 60 64 | 3imtr4i | ⊢ ( ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( ( normℎ ‘ 𝑥 )  +  ( normℎ ‘ 𝑦 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ ( 𝑥  +ℎ  𝑦 ) ) ) )  →  ∃ 𝑣  ∈  ℝ ( 0  <  𝑣  ∧  ∀ 𝑢  ∈  ( 𝐴  +ℋ  𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) )  ≤  ( 𝑣  ·  ( normℎ ‘ 𝑢 ) ) ) ) |