| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdj3lem2.1 |
⊢ 𝐴 ∈ Sℋ |
| 2 |
|
cdj3lem2.2 |
⊢ 𝐵 ∈ Sℋ |
| 3 |
|
cdj3lem3.3 |
⊢ 𝑇 = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
| 4 |
2 1
|
shscomi |
⊢ ( 𝐵 +ℋ 𝐴 ) = ( 𝐴 +ℋ 𝐵 ) |
| 5 |
2
|
sheli |
⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ℋ ) |
| 6 |
1
|
sheli |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ℋ ) |
| 7 |
|
ax-hvcom |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑤 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑤 ) ) |
| 8 |
5 6 7
|
syl2an |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑤 +ℎ 𝑧 ) = ( 𝑧 +ℎ 𝑤 ) ) |
| 9 |
8
|
eqeq2d |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 = ( 𝑤 +ℎ 𝑧 ) ↔ 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
| 10 |
9
|
rexbidva |
⊢ ( 𝑤 ∈ 𝐵 → ( ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑤 +ℎ 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
| 11 |
10
|
riotabiia |
⊢ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑤 +ℎ 𝑧 ) ) = ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) |
| 12 |
4 11
|
mpteq12i |
⊢ ( 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑤 +ℎ 𝑧 ) ) ) = ( 𝑥 ∈ ( 𝐴 +ℋ 𝐵 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑧 +ℎ 𝑤 ) ) ) |
| 13 |
3 12
|
eqtr4i |
⊢ 𝑇 = ( 𝑥 ∈ ( 𝐵 +ℋ 𝐴 ) ↦ ( ℩ 𝑤 ∈ 𝐵 ∃ 𝑧 ∈ 𝐴 𝑥 = ( 𝑤 +ℎ 𝑧 ) ) ) |
| 14 |
2 1 13
|
cdj3lem2b |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐵 +ℋ 𝐴 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 𝑡 → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 𝑡 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝑥 = 𝑡 → ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ) |
| 17 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑡 → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑡 → ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ) |
| 19 |
16 18
|
breq12d |
⊢ ( 𝑥 = 𝑡 → ( ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑦 = ℎ → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ ℎ ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑦 = ℎ → ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑦 = ℎ → ( 𝑡 +ℎ 𝑦 ) = ( 𝑡 +ℎ ℎ ) ) |
| 23 |
22
|
fveq2d |
⊢ ( 𝑦 = ℎ → ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( 𝑦 = ℎ → ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
| 25 |
21 24
|
breq12d |
⊢ ( 𝑦 = ℎ → ( ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
| 26 |
19 25
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
| 27 |
|
ralcom |
⊢ ( ∀ 𝑡 ∈ 𝐴 ∀ ℎ ∈ 𝐵 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ↔ ∀ ℎ ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
| 28 |
2
|
sheli |
⊢ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ ) |
| 29 |
|
normcl |
⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 30 |
28 29
|
syl |
⊢ ( 𝑥 ∈ 𝐵 → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 31 |
30
|
recnd |
⊢ ( 𝑥 ∈ 𝐵 → ( normℎ ‘ 𝑥 ) ∈ ℂ ) |
| 32 |
1
|
sheli |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
| 33 |
|
normcl |
⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
| 34 |
32 33
|
syl |
⊢ ( 𝑦 ∈ 𝐴 → ( normℎ ‘ 𝑦 ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( 𝑦 ∈ 𝐴 → ( normℎ ‘ 𝑦 ) ∈ ℂ ) |
| 36 |
|
addcom |
⊢ ( ( ( normℎ ‘ 𝑥 ) ∈ ℂ ∧ ( normℎ ‘ 𝑦 ) ∈ ℂ ) → ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑥 ) ) ) |
| 37 |
31 35 36
|
syl2an |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) = ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑥 ) ) ) |
| 38 |
|
ax-hvcom |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
| 39 |
28 32 38
|
syl2an |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 +ℎ 𝑦 ) = ( 𝑦 +ℎ 𝑥 ) ) |
| 40 |
39
|
fveq2d |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) ) |
| 41 |
40
|
oveq2d |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) ) ) |
| 42 |
37 41
|
breq12d |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑥 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) ) ) ) |
| 43 |
42
|
ralbidva |
⊢ ( 𝑥 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑥 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) ) ) ) |
| 44 |
43
|
ralbiia |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑥 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) ) ) |
| 45 |
|
fveq2 |
⊢ ( 𝑥 = ℎ → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ ℎ ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑥 = ℎ → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑥 ) ) = ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ℎ ) ) ) |
| 47 |
|
oveq2 |
⊢ ( 𝑥 = ℎ → ( 𝑦 +ℎ 𝑥 ) = ( 𝑦 +ℎ ℎ ) ) |
| 48 |
47
|
fveq2d |
⊢ ( 𝑥 = ℎ → ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) = ( normℎ ‘ ( 𝑦 +ℎ ℎ ) ) ) |
| 49 |
48
|
oveq2d |
⊢ ( 𝑥 = ℎ → ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ ℎ ) ) ) ) |
| 50 |
46 49
|
breq12d |
⊢ ( 𝑥 = ℎ → ( ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑥 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ ℎ ) ) ) ) ) |
| 51 |
|
fveq2 |
⊢ ( 𝑦 = 𝑡 → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 𝑡 ) ) |
| 52 |
51
|
oveq1d |
⊢ ( 𝑦 = 𝑡 → ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ℎ ) ) = ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ) |
| 53 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑡 → ( normℎ ‘ ( 𝑦 +ℎ ℎ ) ) = ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑦 = 𝑡 → ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ ℎ ) ) ) = ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
| 55 |
52 54
|
breq12d |
⊢ ( 𝑦 = 𝑡 → ( ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ ℎ ) ) ) ↔ ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) ) |
| 56 |
50 55
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑦 ) + ( normℎ ‘ 𝑥 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑦 +ℎ 𝑥 ) ) ) ↔ ∀ ℎ ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ) |
| 57 |
44 56
|
bitr2i |
⊢ ( ∀ ℎ ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( normℎ ‘ 𝑡 ) + ( normℎ ‘ ℎ ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑡 +ℎ ℎ ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) |
| 58 |
26 27 57
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) |
| 59 |
58
|
anbi2i |
⊢ ( ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ↔ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) |
| 60 |
59
|
rexbii |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ↔ ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) ) |
| 61 |
1 2
|
shscomi |
⊢ ( 𝐴 +ℋ 𝐵 ) = ( 𝐵 +ℋ 𝐴 ) |
| 62 |
61
|
raleqi |
⊢ ( ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 +ℋ 𝐴 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) |
| 63 |
62
|
anbi2i |
⊢ ( ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ↔ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐵 +ℋ 𝐴 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
| 64 |
63
|
rexbii |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ↔ ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐵 +ℋ 𝐴 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |
| 65 |
14 60 64
|
3imtr4i |
⊢ ( ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( ( normℎ ‘ 𝑥 ) + ( normℎ ‘ 𝑦 ) ) ≤ ( 𝑣 · ( normℎ ‘ ( 𝑥 +ℎ 𝑦 ) ) ) ) → ∃ 𝑣 ∈ ℝ ( 0 < 𝑣 ∧ ∀ 𝑢 ∈ ( 𝐴 +ℋ 𝐵 ) ( normℎ ‘ ( 𝑇 ‘ 𝑢 ) ) ≤ ( 𝑣 · ( normℎ ‘ 𝑢 ) ) ) ) |