| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								1
							 | 
							recnd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							gt0ne0 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ≠  0 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							recne0d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  /  𝐴 )  ≠  0 )  | 
						
						
							| 5 | 
							
								4
							 | 
							necomd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  ≠  ( 1  /  𝐴 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							neneqd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ¬  0  =  ( 1  /  𝐴 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							0lt1 | 
							⊢ 0  <  1  | 
						
						
							| 8 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 9 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ltnsymi | 
							⊢ ( 0  <  1  →  ¬  1  <  0 )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							ax-mp | 
							⊢ ¬  1  <  0  | 
						
						
							| 12 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 13 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  𝐴  ≠  0 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							rereccld | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( 1  /  𝐴 )  ∈  ℝ )  | 
						
						
							| 15 | 
							
								14
							 | 
							renegcld | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  - ( 1  /  𝐴 )  ∈  ℝ )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( 1  /  𝐴 )  <  0 )  | 
						
						
							| 17 | 
							
								1 3
							 | 
							rereccld | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  /  𝐴 )  ∈  ℝ )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( 1  /  𝐴 )  ∈  ℝ )  | 
						
						
							| 19 | 
							
								18
							 | 
							lt0neg1d | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( ( 1  /  𝐴 )  <  0  ↔  0  <  - ( 1  /  𝐴 ) ) )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							mpbid | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  0  <  - ( 1  /  𝐴 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  0  <  𝐴 )  | 
						
						
							| 22 | 
							
								15 12 20 21
							 | 
							mulgt0d | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  0  <  ( - ( 1  /  𝐴 )  ·  𝐴 ) )  | 
						
						
							| 23 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  𝐴  ∈  ℂ )  | 
						
						
							| 24 | 
							
								23 13
							 | 
							reccld | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( 1  /  𝐴 )  ∈  ℂ )  | 
						
						
							| 25 | 
							
								24 23
							 | 
							mulneg1d | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( - ( 1  /  𝐴 )  ·  𝐴 )  =  - ( ( 1  /  𝐴 )  ·  𝐴 ) )  | 
						
						
							| 26 | 
							
								23 13
							 | 
							recid2d | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( ( 1  /  𝐴 )  ·  𝐴 )  =  1 )  | 
						
						
							| 27 | 
							
								26
							 | 
							negeqd | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  - ( ( 1  /  𝐴 )  ·  𝐴 )  =  - 1 )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( - ( 1  /  𝐴 )  ·  𝐴 )  =  - 1 )  | 
						
						
							| 29 | 
							
								22 28
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  0  <  - 1 )  | 
						
						
							| 30 | 
							
								
							 | 
							1red | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  1  ∈  ℝ )  | 
						
						
							| 31 | 
							
								30
							 | 
							lt0neg1d | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  ( 1  <  0  ↔  0  <  - 1 ) )  | 
						
						
							| 32 | 
							
								29 31
							 | 
							mpbird | 
							⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  ∧  ( 1  /  𝐴 )  <  0 )  →  1  <  0 )  | 
						
						
							| 33 | 
							
								32
							 | 
							ex | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( ( 1  /  𝐴 )  <  0  →  1  <  0 ) )  | 
						
						
							| 34 | 
							
								11 33
							 | 
							mtoi | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ¬  ( 1  /  𝐴 )  <  0 )  | 
						
						
							| 35 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( 0  =  ( 1  /  𝐴 )  ∨  ( 1  /  𝐴 )  <  0 )  ↔  ( ¬  0  =  ( 1  /  𝐴 )  ∧  ¬  ( 1  /  𝐴 )  <  0 ) )  | 
						
						
							| 36 | 
							
								6 34 35
							 | 
							sylanbrc | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ¬  ( 0  =  ( 1  /  𝐴 )  ∨  ( 1  /  𝐴 )  <  0 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							axlttri | 
							⊢ ( ( 0  ∈  ℝ  ∧  ( 1  /  𝐴 )  ∈  ℝ )  →  ( 0  <  ( 1  /  𝐴 )  ↔  ¬  ( 0  =  ( 1  /  𝐴 )  ∨  ( 1  /  𝐴 )  <  0 ) ) )  | 
						
						
							| 38 | 
							
								8 17 37
							 | 
							sylancr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 0  <  ( 1  /  𝐴 )  ↔  ¬  ( 0  =  ( 1  /  𝐴 )  ∨  ( 1  /  𝐴 )  <  0 ) ) )  | 
						
						
							| 39 | 
							
								36 38
							 | 
							mpbird | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  0  <  ( 1  /  𝐴 ) )  |