Metamath Proof Explorer


Theorem mddmdin0i

Description: If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of Holland p. 1524 to hold. (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mddmdin0.1 A C
mddmdin0.2 B C
mddmdin0.3 x C y C x 𝑀 * y x y = 0 x 𝑀 y
Assertion mddmdin0i A 𝑀 * B A 𝑀 B

Proof

Step Hyp Ref Expression
1 mddmdin0.1 A C
2 mddmdin0.2 B C
3 mddmdin0.3 x C y C x 𝑀 * y x y = 0 x 𝑀 y
4 inindir A B A B = A A B B A B
5 1 2 chincli A B C
6 5 chocini A B A B = 0
7 4 6 eqtr3i A A B B A B = 0
8 5 choccli A B C
9 1 8 chincli A A B C
10 2 8 chincli B A B C
11 breq1 x = A A B x 𝑀 * y A A B 𝑀 * y
12 ineq1 x = A A B x y = A A B y
13 12 eqeq1d x = A A B x y = 0 A A B y = 0
14 11 13 anbi12d x = A A B x 𝑀 * y x y = 0 A A B 𝑀 * y A A B y = 0
15 breq1 x = A A B x 𝑀 y A A B 𝑀 y
16 14 15 imbi12d x = A A B x 𝑀 * y x y = 0 x 𝑀 y A A B 𝑀 * y A A B y = 0 A A B 𝑀 y
17 breq2 y = B A B A A B 𝑀 * y A A B 𝑀 * B A B
18 ineq2 y = B A B A A B y = A A B B A B
19 18 eqeq1d y = B A B A A B y = 0 A A B B A B = 0
20 17 19 anbi12d y = B A B A A B 𝑀 * y A A B y = 0 A A B 𝑀 * B A B A A B B A B = 0
21 breq2 y = B A B A A B 𝑀 y A A B 𝑀 B A B
22 20 21 imbi12d y = B A B A A B 𝑀 * y A A B y = 0 A A B 𝑀 y A A B 𝑀 * B A B A A B B A B = 0 A A B 𝑀 B A B
23 16 22 rspc2v A A B C B A B C x C y C x 𝑀 * y x y = 0 x 𝑀 y A A B 𝑀 * B A B A A B B A B = 0 A A B 𝑀 B A B
24 9 10 23 mp2an x C y C x 𝑀 * y x y = 0 x 𝑀 y A A B 𝑀 * B A B A A B B A B = 0 A A B 𝑀 B A B
25 3 24 ax-mp A A B 𝑀 * B A B A A B B A B = 0 A A B 𝑀 B A B
26 7 25 mpan2 A A B 𝑀 * B A B A A B 𝑀 B A B
27 1 2 dmdcompli A 𝑀 * B A A B 𝑀 * B A B
28 1 2 mdcompli A 𝑀 B A A B 𝑀 B A B
29 26 27 28 3imtr4i A 𝑀 * B A 𝑀 B