| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mddmdin0.1 |
|- A e. CH |
| 2 |
|
mddmdin0.2 |
|- B e. CH |
| 3 |
|
mddmdin0.3 |
|- A. x e. CH A. y e. CH ( ( x MH* y /\ ( x i^i y ) = 0H ) -> x MH y ) |
| 4 |
|
inindir |
|- ( ( A i^i B ) i^i ( _|_ ` ( A i^i B ) ) ) = ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) |
| 5 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
| 6 |
5
|
chocini |
|- ( ( A i^i B ) i^i ( _|_ ` ( A i^i B ) ) ) = 0H |
| 7 |
4 6
|
eqtr3i |
|- ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) = 0H |
| 8 |
5
|
choccli |
|- ( _|_ ` ( A i^i B ) ) e. CH |
| 9 |
1 8
|
chincli |
|- ( A i^i ( _|_ ` ( A i^i B ) ) ) e. CH |
| 10 |
2 8
|
chincli |
|- ( B i^i ( _|_ ` ( A i^i B ) ) ) e. CH |
| 11 |
|
breq1 |
|- ( x = ( A i^i ( _|_ ` ( A i^i B ) ) ) -> ( x MH* y <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* y ) ) |
| 12 |
|
ineq1 |
|- ( x = ( A i^i ( _|_ ` ( A i^i B ) ) ) -> ( x i^i y ) = ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i y ) ) |
| 13 |
12
|
eqeq1d |
|- ( x = ( A i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( x i^i y ) = 0H <-> ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i y ) = 0H ) ) |
| 14 |
11 13
|
anbi12d |
|- ( x = ( A i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( x MH* y /\ ( x i^i y ) = 0H ) <-> ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* y /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i y ) = 0H ) ) ) |
| 15 |
|
breq1 |
|- ( x = ( A i^i ( _|_ ` ( A i^i B ) ) ) -> ( x MH y <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH y ) ) |
| 16 |
14 15
|
imbi12d |
|- ( x = ( A i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( ( x MH* y /\ ( x i^i y ) = 0H ) -> x MH y ) <-> ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* y /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i y ) = 0H ) -> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH y ) ) ) |
| 17 |
|
breq2 |
|- ( y = ( B i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* y <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* ( B i^i ( _|_ ` ( A i^i B ) ) ) ) ) |
| 18 |
|
ineq2 |
|- ( y = ( B i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i y ) = ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) ) |
| 19 |
18
|
eqeq1d |
|- ( y = ( B i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i y ) = 0H <-> ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) = 0H ) ) |
| 20 |
17 19
|
anbi12d |
|- ( y = ( B i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* y /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i y ) = 0H ) <-> ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* ( B i^i ( _|_ ` ( A i^i B ) ) ) /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) = 0H ) ) ) |
| 21 |
|
breq2 |
|- ( y = ( B i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH y <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) ) |
| 22 |
20 21
|
imbi12d |
|- ( y = ( B i^i ( _|_ ` ( A i^i B ) ) ) -> ( ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* y /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i y ) = 0H ) -> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH y ) <-> ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* ( B i^i ( _|_ ` ( A i^i B ) ) ) /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) = 0H ) -> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) ) ) |
| 23 |
16 22
|
rspc2v |
|- ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) e. CH /\ ( B i^i ( _|_ ` ( A i^i B ) ) ) e. CH ) -> ( A. x e. CH A. y e. CH ( ( x MH* y /\ ( x i^i y ) = 0H ) -> x MH y ) -> ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* ( B i^i ( _|_ ` ( A i^i B ) ) ) /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) = 0H ) -> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) ) ) |
| 24 |
9 10 23
|
mp2an |
|- ( A. x e. CH A. y e. CH ( ( x MH* y /\ ( x i^i y ) = 0H ) -> x MH y ) -> ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* ( B i^i ( _|_ ` ( A i^i B ) ) ) /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) = 0H ) -> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) ) |
| 25 |
3 24
|
ax-mp |
|- ( ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* ( B i^i ( _|_ ` ( A i^i B ) ) ) /\ ( ( A i^i ( _|_ ` ( A i^i B ) ) ) i^i ( B i^i ( _|_ ` ( A i^i B ) ) ) ) = 0H ) -> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) |
| 26 |
7 25
|
mpan2 |
|- ( ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* ( B i^i ( _|_ ` ( A i^i B ) ) ) -> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) |
| 27 |
1 2
|
dmdcompli |
|- ( A MH* B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH* ( B i^i ( _|_ ` ( A i^i B ) ) ) ) |
| 28 |
1 2
|
mdcompli |
|- ( A MH B <-> ( A i^i ( _|_ ` ( A i^i B ) ) ) MH ( B i^i ( _|_ ` ( A i^i B ) ) ) ) |
| 29 |
26 27 28
|
3imtr4i |
|- ( A MH* B -> A MH B ) |