| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniwf | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ↔  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 2 |  | uniwf | ⊢ ( ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  ↔  ∪  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 3 | 1 2 | bitri | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  ↔  ∪  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 4 |  | ssun1 | ⊢ dom  𝐴  ⊆  ( dom  𝐴  ∪  ran  𝐴 ) | 
						
							| 5 |  | dmrnssfld | ⊢ ( dom  𝐴  ∪  ran  𝐴 )  ⊆  ∪  ∪  𝐴 | 
						
							| 6 | 4 5 | sstri | ⊢ dom  𝐴  ⊆  ∪  ∪  𝐴 | 
						
							| 7 |  | sswf | ⊢ ( ( ∪  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  ∧  dom  𝐴  ⊆  ∪  ∪  𝐴 )  →  dom  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( ∪  ∪  𝐴  ∈  ∪  ( 𝑅1  “  On )  →  dom  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) | 
						
							| 9 | 3 8 | sylbi | ⊢ ( 𝐴  ∈  ∪  ( 𝑅1  “  On )  →  dom  𝐴  ∈  ∪  ( 𝑅1  “  On ) ) |