Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
dom0OLD
Metamath Proof Explorer
Description: Obsolete version of dom0 as of 29-Nov-2024. (Contributed by NM , 22-Nov-2004) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
dom0OLD
⊢ ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ )
Proof
Step
Hyp
Ref
Expression
1
reldom
⊢ Rel ≼
2
1
brrelex1i
⊢ ( 𝐴 ≼ ∅ → 𝐴 ∈ V )
3
0domg
⊢ ( 𝐴 ∈ V → ∅ ≼ 𝐴 )
4
2 3
syl
⊢ ( 𝐴 ≼ ∅ → ∅ ≼ 𝐴 )
5
4
pm4.71i
⊢ ( 𝐴 ≼ ∅ ↔ ( 𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴 ) )
6
sbthb
⊢ ( ( 𝐴 ≼ ∅ ∧ ∅ ≼ 𝐴 ) ↔ 𝐴 ≈ ∅ )
7
en0
⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ )
8
5 6 7
3bitri
⊢ ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ )