Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Union Schroeder-Bernstein Theorem dom0OLD  
				
		 
		
			
		 
		Description:   Obsolete version of dom0  as of 29-Nov-2024.  (Contributed by NM , 22-Nov-2004)   (Proof modification is discouraged.) 
     (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					dom0OLD ⊢   ( 𝐴   ≼  ∅  ↔  𝐴   =  ∅ )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							reldom ⊢  Rel   ≼   
						
							2 
								1 
							 
							brrelex1i ⊢  ( 𝐴   ≼  ∅  →  𝐴   ∈  V )  
						
							3 
								
							 
							0domg ⊢  ( 𝐴   ∈  V  →  ∅  ≼  𝐴  )  
						
							4 
								2  3 
							 
							syl ⊢  ( 𝐴   ≼  ∅  →  ∅  ≼  𝐴  )  
						
							5 
								4 
							 
							pm4.71i ⊢  ( 𝐴   ≼  ∅  ↔  ( 𝐴   ≼  ∅  ∧  ∅  ≼  𝐴  ) )  
						
							6 
								
							 
							sbthb ⊢  ( ( 𝐴   ≼  ∅  ∧  ∅  ≼  𝐴  )  ↔  𝐴   ≈  ∅ )  
						
							7 
								
							 
							en0 ⊢  ( 𝐴   ≈  ∅  ↔  𝐴   =  ∅ )  
						
							8 
								5  6  7 
							 
							3bitri ⊢  ( 𝐴   ≼  ∅  ↔  𝐴   =  ∅ )