| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dp2clq.a | ⊢ 𝐴  ∈  ℕ0 | 
						
							| 2 |  | dp2clq.b | ⊢ 𝐵  ∈  ℚ | 
						
							| 3 |  | df-dp2 | ⊢ _ 𝐴 𝐵  =  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) ) | 
						
							| 4 |  | nn0ssq | ⊢ ℕ0  ⊆  ℚ | 
						
							| 5 | 4 1 | sselii | ⊢ 𝐴  ∈  ℚ | 
						
							| 6 |  | 10nn0 | ⊢ ; 1 0  ∈  ℕ0 | 
						
							| 7 | 4 6 | sselii | ⊢ ; 1 0  ∈  ℚ | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | 10pos | ⊢ 0  <  ; 1 0 | 
						
							| 10 | 8 9 | gtneii | ⊢ ; 1 0  ≠  0 | 
						
							| 11 |  | qdivcl | ⊢ ( ( 𝐵  ∈  ℚ  ∧  ; 1 0  ∈  ℚ  ∧  ; 1 0  ≠  0 )  →  ( 𝐵  /  ; 1 0 )  ∈  ℚ ) | 
						
							| 12 | 2 7 10 11 | mp3an | ⊢ ( 𝐵  /  ; 1 0 )  ∈  ℚ | 
						
							| 13 |  | qaddcl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  ( 𝐵  /  ; 1 0 )  ∈  ℚ )  →  ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  ∈  ℚ ) | 
						
							| 14 | 5 12 13 | mp2an | ⊢ ( 𝐴  +  ( 𝐵  /  ; 1 0 ) )  ∈  ℚ | 
						
							| 15 | 3 14 | eqeltri | ⊢ _ 𝐴 𝐵  ∈  ℚ |