Metamath Proof Explorer


Theorem e120

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 10-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e120.1 (    𝜑    ▶    𝜓    )
e120.2 (    𝜑    ,    𝜒    ▶    𝜃    )
e120.3 𝜏
e120.4 ( 𝜓 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion e120 (    𝜑    ,    𝜒    ▶    𝜂    )

Proof

Step Hyp Ref Expression
1 e120.1 (    𝜑    ▶    𝜓    )
2 e120.2 (    𝜑    ,    𝜒    ▶    𝜃    )
3 e120.3 𝜏
4 e120.4 ( 𝜓 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 1 vd12 (    𝜑    ,    𝜒    ▶    𝜓    )
6 5 2 3 4 e220 (    𝜑    ,    𝜒    ▶    𝜂    )