Metamath Proof Explorer


Theorem eceldmqsxrncnvepres

Description: An ( R |X. ( ' E | A ) ) -coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025)

Ref Expression
Assertion eceldmqsxrncnvepres ( ( 𝐴𝑉𝐵𝑊𝑅𝑋 ) → ( [ 𝐵 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) ↔ ( 𝐵𝐴𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) )

Proof

Step Hyp Ref Expression
1 xrncnvepresex ( ( 𝐴𝑉𝑅𝑋 ) → ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ V )
2 eceldmqs ( ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ V → ( [ 𝐵 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) ↔ 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) )
3 1 2 syl ( ( 𝐴𝑉𝑅𝑋 ) → ( [ 𝐵 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) ↔ 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) )
4 3 3adant2 ( ( 𝐴𝑉𝐵𝑊𝑅𝑋 ) → ( [ 𝐵 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) ↔ 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) )
5 eldmxrncnvepres ( 𝐵𝑊 → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ ( 𝐵𝐴𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) )
6 5 3ad2ant2 ( ( 𝐴𝑉𝐵𝑊𝑅𝑋 ) → ( 𝐵 ∈ dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ↔ ( 𝐵𝐴𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) )
7 4 6 bitrd ( ( 𝐴𝑉𝐵𝑊𝑅𝑋 ) → ( [ 𝐵 ] ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ∈ ( dom ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) / ( 𝑅 ⋉ ( E ↾ 𝐴 ) ) ) ↔ ( 𝐵𝐴𝐵 ≠ ∅ ∧ [ 𝐵 ] 𝑅 ≠ ∅ ) ) )