Metamath Proof Explorer
Description: e20an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
ee20an.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
|
|
ee20an.2 |
⊢ 𝜃 |
|
|
ee20an.3 |
⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) |
|
Assertion |
ee20an |
⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ee20an.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
ee20an.2 |
⊢ 𝜃 |
3 |
|
ee20an.3 |
⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) |
4 |
3
|
ex |
⊢ ( 𝜒 → ( 𝜃 → 𝜏 ) ) |
5 |
1 2 4
|
syl6mpi |
⊢ ( 𝜑 → ( 𝜓 → 𝜏 ) ) |