Metamath Proof Explorer


Theorem efmndcl

Description: The group operation of the monoid of endofunctions on A is closed. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndtset.g 𝐺 = ( EndoFMnd ‘ 𝐴 )
efmndplusg.b 𝐵 = ( Base ‘ 𝐺 )
efmndplusg.p + = ( +g𝐺 )
Assertion efmndcl ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 efmndtset.g 𝐺 = ( EndoFMnd ‘ 𝐴 )
2 efmndplusg.b 𝐵 = ( Base ‘ 𝐺 )
3 efmndplusg.p + = ( +g𝐺 )
4 1 2 3 efmndov ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) = ( 𝑋𝑌 ) )
5 1 2 efmndbasf ( 𝑋𝐵𝑋 : 𝐴𝐴 )
6 1 2 efmndbasf ( 𝑌𝐵𝑌 : 𝐴𝐴 )
7 fco ( ( 𝑋 : 𝐴𝐴𝑌 : 𝐴𝐴 ) → ( 𝑋𝑌 ) : 𝐴𝐴 )
8 5 6 7 syl2an ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝑌 ) : 𝐴𝐴 )
9 coexg ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝑌 ) ∈ V )
10 1 2 elefmndbas2 ( ( 𝑋𝑌 ) ∈ V → ( ( 𝑋𝑌 ) ∈ 𝐵 ↔ ( 𝑋𝑌 ) : 𝐴𝐴 ) )
11 9 10 syl ( ( 𝑋𝐵𝑌𝐵 ) → ( ( 𝑋𝑌 ) ∈ 𝐵 ↔ ( 𝑋𝑌 ) : 𝐴𝐴 ) )
12 8 11 mpbird ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋𝑌 ) ∈ 𝐵 )
13 4 12 eqeltrd ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )