Metamath Proof Explorer


Theorem efmndcl

Description: The group operation of the monoid of endofunctions on A is closed. (Contributed by AV, 27-Jan-2024)

Ref Expression
Hypotheses efmndtset.g No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
efmndplusg.b B=BaseG
efmndplusg.p +˙=+G
Assertion efmndcl XBYBX+˙YB

Proof

Step Hyp Ref Expression
1 efmndtset.g Could not format G = ( EndoFMnd ` A ) : No typesetting found for |- G = ( EndoFMnd ` A ) with typecode |-
2 efmndplusg.b B=BaseG
3 efmndplusg.p +˙=+G
4 1 2 3 efmndov XBYBX+˙Y=XY
5 1 2 efmndbasf XBX:AA
6 1 2 efmndbasf YBY:AA
7 fco X:AAY:AAXY:AA
8 5 6 7 syl2an XBYBXY:AA
9 coexg XBYBXYV
10 1 2 elefmndbas2 XYVXYBXY:AA
11 9 10 syl XBYBXYBXY:AA
12 8 11 mpbird XBYBXYB
13 4 12 eqeltrd XBYBX+˙YB