Metamath Proof Explorer


Theorem eigre

Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for an eigenvalue B to be real. Generalization of Equation 1.30 of Hughes p. 49. (Contributed by NM, 19-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eigre ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝑇𝐴 ) = ( 𝐵 · 𝐴 ) ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝑇𝐴 ) = ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
2 oveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐵 · 𝐴 ) = ( 𝐵 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
3 1 2 eqeq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( 𝑇𝐴 ) = ( 𝐵 · 𝐴 ) ↔ ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( 𝐵 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
4 neeq1 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐴 ≠ 0 ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ≠ 0 ) )
5 3 4 anbi12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( 𝑇𝐴 ) = ( 𝐵 · 𝐴 ) ∧ 𝐴 ≠ 0 ) ↔ ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( 𝐵 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ≠ 0 ) ) )
6 id ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) )
7 6 1 oveq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
8 1 6 oveq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( 𝑇𝐴 ) ·ih 𝐴 ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
9 7 8 eqeq12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐴 ) ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
10 9 bibi1d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ↔ 𝐵 ∈ ℝ ) ) )
11 5 10 imbi12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( ( ( 𝑇𝐴 ) = ( 𝐵 · 𝐴 ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) ↔ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( 𝐵 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ≠ 0 ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ↔ 𝐵 ∈ ℝ ) ) ) )
12 oveq1 ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
13 12 eqeq2d ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( 𝐵 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ↔ ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
14 13 anbi1d ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( 𝐵 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ≠ 0 ) ↔ ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ≠ 0 ) ) )
15 eleq1 ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( 𝐵 ∈ ℝ ↔ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℝ ) )
16 15 bibi2d ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ↔ 𝐵 ∈ ℝ ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ↔ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℝ ) ) )
17 14 16 imbi12d ( 𝐵 = if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) → ( ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( 𝐵 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ≠ 0 ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ↔ 𝐵 ∈ ℝ ) ) ↔ ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ≠ 0 ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ↔ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℝ ) ) ) )
18 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
19 0cn 0 ∈ ℂ
20 19 elimel if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℂ
21 18 20 eigrei ( ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) = ( if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ∧ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ≠ 0 ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ·ih ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) = ( ( 𝑇 ‘ if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ·ih if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ↔ if ( 𝐵 ∈ ℂ , 𝐵 , 0 ) ∈ ℝ ) )
22 11 17 21 dedth2h ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝑇𝐴 ) = ( 𝐵 · 𝐴 ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) )
23 22 imp ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) ∧ ( ( 𝑇𝐴 ) = ( 𝐵 · 𝐴 ) ∧ 𝐴 ≠ 0 ) ) → ( ( 𝐴 ·ih ( 𝑇𝐴 ) ) = ( ( 𝑇𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) )