| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
⊢ ( eigvec ‘ 𝑇 ) ∈ V |
| 2 |
1
|
mptex |
⊢ ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ∈ V |
| 3 |
|
ax-hilex |
⊢ ℋ ∈ V |
| 4 |
|
fveq2 |
⊢ ( 𝑡 = 𝑇 → ( eigvec ‘ 𝑡 ) = ( eigvec ‘ 𝑇 ) ) |
| 5 |
|
fveq1 |
⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝑡 = 𝑇 → ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) |
| 8 |
4 7
|
mpteq12dv |
⊢ ( 𝑡 = 𝑇 → ( 𝑥 ∈ ( eigvec ‘ 𝑡 ) ↦ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 9 |
|
df-eigval |
⊢ eigval = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ ( 𝑥 ∈ ( eigvec ‘ 𝑡 ) ↦ ( ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |
| 10 |
2 3 3 8 9
|
fvmptmap |
⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigval ‘ 𝑇 ) = ( 𝑥 ∈ ( eigvec ‘ 𝑇 ) ↦ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑥 ) / ( ( normℎ ‘ 𝑥 ) ↑ 2 ) ) ) ) |