| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( eigvec ` T ) e. _V |
| 2 |
1
|
mptex |
|- ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) e. _V |
| 3 |
|
ax-hilex |
|- ~H e. _V |
| 4 |
|
fveq2 |
|- ( t = T -> ( eigvec ` t ) = ( eigvec ` T ) ) |
| 5 |
|
fveq1 |
|- ( t = T -> ( t ` x ) = ( T ` x ) ) |
| 6 |
5
|
oveq1d |
|- ( t = T -> ( ( t ` x ) .ih x ) = ( ( T ` x ) .ih x ) ) |
| 7 |
6
|
oveq1d |
|- ( t = T -> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) = ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) |
| 8 |
4 7
|
mpteq12dv |
|- ( t = T -> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
| 9 |
|
df-eigval |
|- eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |
| 10 |
2 3 3 8 9
|
fvmptmap |
|- ( T : ~H --> ~H -> ( eigval ` T ) = ( x e. ( eigvec ` T ) |-> ( ( ( T ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) ) |