Metamath Proof Explorer
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005) (Revised by Mario Carneiro, 28-Apr-2015)
|
|
Ref |
Expression |
|
Assertion |
elfz4 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elfz2 |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
2 |
1
|
biimpri |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |