| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elimifd.1 |
⊢ ( 𝜑 → ( if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 → ( 𝜒 ↔ 𝜃 ) ) ) |
| 2 |
|
elimifd.2 |
⊢ ( 𝜑 → ( if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 → ( 𝜒 ↔ 𝜏 ) ) ) |
| 3 |
|
exmid |
⊢ ( 𝜓 ∨ ¬ 𝜓 ) |
| 4 |
3
|
biantrur |
⊢ ( 𝜒 ↔ ( ( 𝜓 ∨ ¬ 𝜓 ) ∧ 𝜒 ) ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝜒 ↔ ( ( 𝜓 ∨ ¬ 𝜓 ) ∧ 𝜒 ) ) ) |
| 6 |
|
andir |
⊢ ( ( ( 𝜓 ∨ ¬ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ ( ¬ 𝜓 ∧ 𝜒 ) ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( ( 𝜓 ∨ ¬ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∨ ( ¬ 𝜓 ∧ 𝜒 ) ) ) ) |
| 8 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 ) |
| 9 |
8 1
|
syl5 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ↔ 𝜃 ) ) ) |
| 10 |
9
|
pm5.32d |
⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜃 ) ) ) |
| 11 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 ) |
| 12 |
11 2
|
syl5 |
⊢ ( 𝜑 → ( ¬ 𝜓 → ( 𝜒 ↔ 𝜏 ) ) ) |
| 13 |
12
|
pm5.32d |
⊢ ( 𝜑 → ( ( ¬ 𝜓 ∧ 𝜒 ) ↔ ( ¬ 𝜓 ∧ 𝜏 ) ) ) |
| 14 |
10 13
|
orbi12d |
⊢ ( 𝜑 → ( ( ( 𝜓 ∧ 𝜒 ) ∨ ( ¬ 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜃 ) ∨ ( ¬ 𝜓 ∧ 𝜏 ) ) ) ) |
| 15 |
5 7 14
|
3bitrd |
⊢ ( 𝜑 → ( 𝜒 ↔ ( ( 𝜓 ∧ 𝜃 ) ∨ ( ¬ 𝜓 ∧ 𝜏 ) ) ) ) |