Metamath Proof Explorer


Theorem elimifd

Description: Elimination of a conditional operator contained in a wff ch . (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses elimifd.1 φifψAB=Aχθ
elimifd.2 φifψAB=Bχτ
Assertion elimifd φχψθ¬ψτ

Proof

Step Hyp Ref Expression
1 elimifd.1 φifψAB=Aχθ
2 elimifd.2 φifψAB=Bχτ
3 exmid ψ¬ψ
4 3 biantrur χψ¬ψχ
5 4 a1i φχψ¬ψχ
6 andir ψ¬ψχψχ¬ψχ
7 6 a1i φψ¬ψχψχ¬ψχ
8 iftrue ψifψAB=A
9 8 1 syl5 φψχθ
10 9 pm5.32d φψχψθ
11 iffalse ¬ψifψAB=B
12 11 2 syl5 φ¬ψχτ
13 12 pm5.32d φ¬ψχ¬ψτ
14 10 13 orbi12d φψχ¬ψχψθ¬ψτ
15 5 7 14 3bitrd φχψθ¬ψτ