Metamath Proof Explorer


Theorem elmapresaun

Description: fresaun transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Assertion elmapresaun ( ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( 𝐹𝐺 ) ∈ ( 𝐶m ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 elmapi ( 𝐹 ∈ ( 𝐶m 𝐴 ) → 𝐹 : 𝐴𝐶 )
2 elmapi ( 𝐺 ∈ ( 𝐶m 𝐵 ) → 𝐺 : 𝐵𝐶 )
3 id ( ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) → ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) )
4 fresaun ( ( 𝐹 : 𝐴𝐶𝐺 : 𝐵𝐶 ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 )
5 1 2 3 4 syl3an ( ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 )
6 elmapex ( 𝐹 ∈ ( 𝐶m 𝐴 ) → ( 𝐶 ∈ V ∧ 𝐴 ∈ V ) )
7 6 simpld ( 𝐹 ∈ ( 𝐶m 𝐴 ) → 𝐶 ∈ V )
8 7 3ad2ant1 ( ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → 𝐶 ∈ V )
9 6 simprd ( 𝐹 ∈ ( 𝐶m 𝐴 ) → 𝐴 ∈ V )
10 elmapex ( 𝐺 ∈ ( 𝐶m 𝐵 ) → ( 𝐶 ∈ V ∧ 𝐵 ∈ V ) )
11 10 simprd ( 𝐺 ∈ ( 𝐶m 𝐵 ) → 𝐵 ∈ V )
12 unexg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
13 9 11 12 syl2an ( ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐵 ) ) → ( 𝐴𝐵 ) ∈ V )
14 13 3adant3 ( ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( 𝐴𝐵 ) ∈ V )
15 8 14 elmapd ( ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( ( 𝐹𝐺 ) ∈ ( 𝐶m ( 𝐴𝐵 ) ) ↔ ( 𝐹𝐺 ) : ( 𝐴𝐵 ) ⟶ 𝐶 ) )
16 5 15 mpbird ( ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐵 ) ∧ ( 𝐹 ↾ ( 𝐴𝐵 ) ) = ( 𝐺 ↾ ( 𝐴𝐵 ) ) ) → ( 𝐹𝐺 ) ∈ ( 𝐶m ( 𝐴𝐵 ) ) )