Metamath Proof Explorer


Theorem elnelne1

Description: Two classes are different if they don't contain the same element. (Contributed by AV, 28-Jan-2020)

Ref Expression
Assertion elnelne1 ( ( 𝐴𝐵𝐴𝐶 ) → 𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 df-nel ( 𝐴𝐶 ↔ ¬ 𝐴𝐶 )
2 nelne1 ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) → 𝐵𝐶 )
3 1 2 sylan2b ( ( 𝐴𝐵𝐴𝐶 ) → 𝐵𝐶 )