| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 2 |  | pweq | ⊢ ( 𝑦  =  𝑥  →  𝒫  𝑦  =  𝒫  𝑥 ) | 
						
							| 3 | 2 | sqxpeqd | ⊢ ( 𝑦  =  𝑥  →  ( 𝒫  𝑦  ×  𝒫  𝑦 )  =  ( 𝒫  𝑥  ×  𝒫  𝑥 ) ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) )  =  ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) | 
						
							| 5 | 1 | pwex | ⊢ 𝒫  𝑥  ∈  V | 
						
							| 6 | 5 5 | xpex | ⊢ ( 𝒫  𝑥  ×  𝒫  𝑥 )  ∈  V | 
						
							| 7 | 3 4 6 | fvmpt | ⊢ ( 𝑥  ∈  V  →  ( ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) ‘ 𝑥 )  =  ( 𝒫  𝑥  ×  𝒫  𝑥 ) ) | 
						
							| 8 | 1 7 | ax-mp | ⊢ ( ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) ‘ 𝑥 )  =  ( 𝒫  𝑥  ×  𝒫  𝑥 ) | 
						
							| 9 | 8 | eleq2i | ⊢ ( 𝐴  ∈  ( ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) ‘ 𝑥 )  ↔  𝐴  ∈  ( 𝒫  𝑥  ×  𝒫  𝑥 ) ) | 
						
							| 10 |  | elxp7 | ⊢ ( 𝐴  ∈  ( 𝒫  𝑥  ×  𝒫  𝑥 )  ↔  ( 𝐴  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) ) | 
						
							| 11 | 9 10 | bitri | ⊢ ( 𝐴  ∈  ( ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) ‘ 𝑥 )  ↔  ( 𝐴  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) ) | 
						
							| 12 | 11 | anbi2i | ⊢ ( ( 𝑥  ⊆  Pg  ∧  𝐴  ∈  ( ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) ‘ 𝑥 ) )  ↔  ( 𝑥  ⊆  Pg  ∧  ( 𝐴  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) ) ) | 
						
							| 13 |  | an12 | ⊢ ( ( 𝑥  ⊆  Pg  ∧  ( 𝐴  ∈  ( V  ×  V )  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) )  ↔  ( 𝐴  ∈  ( V  ×  V )  ∧  ( 𝑥  ⊆  Pg  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ( 𝑥  ⊆  Pg  ∧  𝐴  ∈  ( ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) ‘ 𝑥 ) )  ↔  ( 𝐴  ∈  ( V  ×  V )  ∧  ( 𝑥  ⊆  Pg  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) ) ) | 
						
							| 15 | 14 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ⊆  Pg  ∧  𝐴  ∈  ( ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) ‘ 𝑥 ) )  ↔  ∃ 𝑥 ( 𝐴  ∈  ( V  ×  V )  ∧  ( 𝑥  ⊆  Pg  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) ) ) | 
						
							| 16 |  | 19.42v | ⊢ ( ∃ 𝑥 ( 𝐴  ∈  ( V  ×  V )  ∧  ( 𝑥  ⊆  Pg  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) )  ↔  ( 𝐴  ∈  ( V  ×  V )  ∧  ∃ 𝑥 ( 𝑥  ⊆  Pg  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) ) ) | 
						
							| 17 | 15 16 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥  ⊆  Pg  ∧  𝐴  ∈  ( ( 𝑦  ∈  V  ↦  ( 𝒫  𝑦  ×  𝒫  𝑦 ) ) ‘ 𝑥 ) )  ↔  ( 𝐴  ∈  ( V  ×  V )  ∧  ∃ 𝑥 ( 𝑥  ⊆  Pg  ∧  ( ( 1st  ‘ 𝐴 )  ∈  𝒫  𝑥  ∧  ( 2nd  ‘ 𝐴 )  ∈  𝒫  𝑥 ) ) ) ) |