Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
⊢ 𝑥 ∈ V |
2 |
|
pweq |
⊢ ( 𝑦 = 𝑥 → 𝒫 𝑦 = 𝒫 𝑥 ) |
3 |
2
|
sqxpeqd |
⊢ ( 𝑦 = 𝑥 → ( 𝒫 𝑦 × 𝒫 𝑦 ) = ( 𝒫 𝑥 × 𝒫 𝑥 ) ) |
4 |
|
eqid |
⊢ ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) = ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) |
5 |
1
|
pwex |
⊢ 𝒫 𝑥 ∈ V |
6 |
5 5
|
xpex |
⊢ ( 𝒫 𝑥 × 𝒫 𝑥 ) ∈ V |
7 |
3 4 6
|
fvmpt |
⊢ ( 𝑥 ∈ V → ( ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) ‘ 𝑥 ) = ( 𝒫 𝑥 × 𝒫 𝑥 ) ) |
8 |
1 7
|
ax-mp |
⊢ ( ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) ‘ 𝑥 ) = ( 𝒫 𝑥 × 𝒫 𝑥 ) |
9 |
8
|
eleq2i |
⊢ ( 𝐴 ∈ ( ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) ‘ 𝑥 ) ↔ 𝐴 ∈ ( 𝒫 𝑥 × 𝒫 𝑥 ) ) |
10 |
|
elxp7 |
⊢ ( 𝐴 ∈ ( 𝒫 𝑥 × 𝒫 𝑥 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) |
11 |
9 10
|
bitri |
⊢ ( 𝐴 ∈ ( ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) ‘ 𝑥 ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) |
12 |
11
|
anbi2i |
⊢ ( ( 𝑥 ⊆ Pg ∧ 𝐴 ∈ ( ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) ‘ 𝑥 ) ) ↔ ( 𝑥 ⊆ Pg ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) ) |
13 |
|
an12 |
⊢ ( ( 𝑥 ⊆ Pg ∧ ( 𝐴 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( 𝑥 ⊆ Pg ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ( 𝑥 ⊆ Pg ∧ 𝐴 ∈ ( ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ( 𝑥 ⊆ Pg ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) ) |
15 |
14
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ⊆ Pg ∧ 𝐴 ∈ ( ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝐴 ∈ ( V × V ) ∧ ( 𝑥 ⊆ Pg ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) ) |
16 |
|
19.42v |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ ( V × V ) ∧ ( 𝑥 ⊆ Pg ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ∃ 𝑥 ( 𝑥 ⊆ Pg ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) ) |
17 |
15 16
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑥 ⊆ Pg ∧ 𝐴 ∈ ( ( 𝑦 ∈ V ↦ ( 𝒫 𝑦 × 𝒫 𝑦 ) ) ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ ( V × V ) ∧ ∃ 𝑥 ( 𝑥 ⊆ Pg ∧ ( ( 1st ‘ 𝐴 ) ∈ 𝒫 𝑥 ∧ ( 2nd ‘ 𝐴 ) ∈ 𝒫 𝑥 ) ) ) ) |