| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vex |  |-  x e. _V | 
						
							| 2 |  | pweq |  |-  ( y = x -> ~P y = ~P x ) | 
						
							| 3 | 2 | sqxpeqd |  |-  ( y = x -> ( ~P y X. ~P y ) = ( ~P x X. ~P x ) ) | 
						
							| 4 |  | eqid |  |-  ( y e. _V |-> ( ~P y X. ~P y ) ) = ( y e. _V |-> ( ~P y X. ~P y ) ) | 
						
							| 5 | 1 | pwex |  |-  ~P x e. _V | 
						
							| 6 | 5 5 | xpex |  |-  ( ~P x X. ~P x ) e. _V | 
						
							| 7 | 3 4 6 | fvmpt |  |-  ( x e. _V -> ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) = ( ~P x X. ~P x ) ) | 
						
							| 8 | 1 7 | ax-mp |  |-  ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) = ( ~P x X. ~P x ) | 
						
							| 9 | 8 | eleq2i |  |-  ( A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) <-> A e. ( ~P x X. ~P x ) ) | 
						
							| 10 |  | elxp7 |  |-  ( A e. ( ~P x X. ~P x ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) | 
						
							| 11 | 9 10 | bitri |  |-  ( A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) | 
						
							| 12 | 11 | anbi2i |  |-  ( ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> ( x C_ Pg /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) | 
						
							| 13 |  | an12 |  |-  ( ( x C_ Pg /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) <-> ( A e. ( _V X. _V ) /\ ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) | 
						
							| 14 | 12 13 | bitri |  |-  ( ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> ( A e. ( _V X. _V ) /\ ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) | 
						
							| 15 | 14 | exbii |  |-  ( E. x ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> E. x ( A e. ( _V X. _V ) /\ ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) | 
						
							| 16 |  | 19.42v |  |-  ( E. x ( A e. ( _V X. _V ) /\ ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) <-> ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) | 
						
							| 17 | 15 16 | bitri |  |-  ( E. x ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |