Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
|
pweq |
|- ( y = x -> ~P y = ~P x ) |
3 |
2
|
sqxpeqd |
|- ( y = x -> ( ~P y X. ~P y ) = ( ~P x X. ~P x ) ) |
4 |
|
eqid |
|- ( y e. _V |-> ( ~P y X. ~P y ) ) = ( y e. _V |-> ( ~P y X. ~P y ) ) |
5 |
1
|
pwex |
|- ~P x e. _V |
6 |
5 5
|
xpex |
|- ( ~P x X. ~P x ) e. _V |
7 |
3 4 6
|
fvmpt |
|- ( x e. _V -> ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) = ( ~P x X. ~P x ) ) |
8 |
1 7
|
ax-mp |
|- ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) = ( ~P x X. ~P x ) |
9 |
8
|
eleq2i |
|- ( A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) <-> A e. ( ~P x X. ~P x ) ) |
10 |
|
elxp7 |
|- ( A e. ( ~P x X. ~P x ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) |
11 |
9 10
|
bitri |
|- ( A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) |
12 |
11
|
anbi2i |
|- ( ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> ( x C_ Pg /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |
13 |
|
an12 |
|- ( ( x C_ Pg /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) <-> ( A e. ( _V X. _V ) /\ ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |
14 |
12 13
|
bitri |
|- ( ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> ( A e. ( _V X. _V ) /\ ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |
15 |
14
|
exbii |
|- ( E. x ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> E. x ( A e. ( _V X. _V ) /\ ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |
16 |
|
19.42v |
|- ( E. x ( A e. ( _V X. _V ) /\ ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) <-> ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |
17 |
15 16
|
bitri |
|- ( E. x ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |