Step |
Hyp |
Ref |
Expression |
1 |
|
elpglem1 |
|- ( E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) -> ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) |
2 |
|
elpglem2 |
|- ( ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) -> E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) |
3 |
1 2
|
impbii |
|- ( E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) <-> ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) |
4 |
3
|
anbi2i |
|- ( ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) ) |
5 |
|
df-pg |
|- Pg = setrecs ( ( y e. _V |-> ( ~P y X. ~P y ) ) ) |
6 |
5
|
elsetrecs |
|- ( A e. Pg <-> E. x ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) ) |
7 |
|
elpglem3 |
|- ( E. x ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |
8 |
6 7
|
bitri |
|- ( A e. Pg <-> ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) |
9 |
|
3anass |
|- ( ( A e. ( _V X. _V ) /\ ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) ) |
10 |
4 8 9
|
3bitr4i |
|- ( A e. Pg <-> ( A e. ( _V X. _V ) /\ ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) |