| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpglem1 |  |-  ( E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) -> ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) | 
						
							| 2 |  | elpglem2 |  |-  ( ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) -> E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) | 
						
							| 3 | 1 2 | impbii |  |-  ( E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) <-> ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) | 
						
							| 4 | 3 | anbi2i |  |-  ( ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) ) | 
						
							| 5 |  | df-pg |  |-  Pg = setrecs ( ( y e. _V |-> ( ~P y X. ~P y ) ) ) | 
						
							| 6 | 5 | elsetrecs |  |-  ( A e. Pg <-> E. x ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) ) | 
						
							| 7 |  | elpglem3 |  |-  ( E. x ( x C_ Pg /\ A e. ( ( y e. _V |-> ( ~P y X. ~P y ) ) ` x ) ) <-> ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) | 
						
							| 8 | 6 7 | bitri |  |-  ( A e. Pg <-> ( A e. ( _V X. _V ) /\ E. x ( x C_ Pg /\ ( ( 1st ` A ) e. ~P x /\ ( 2nd ` A ) e. ~P x ) ) ) ) | 
						
							| 9 |  | 3anass |  |-  ( ( A e. ( _V X. _V ) /\ ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) ) | 
						
							| 10 | 4 8 9 | 3bitr4i |  |-  ( A e. Pg <-> ( A e. ( _V X. _V ) /\ ( 1st ` A ) C_ Pg /\ ( 2nd ` A ) C_ Pg ) ) |