Description: Membership in a predecessor class. (Contributed by Scott Fenton, 17-Apr-2011) Generalize to closed form. (Revised by BJ, 16-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | elpredgg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) | |
2 | 1 | elin2 | ⊢ ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 ∈ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
3 | elinisegg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑌 ∈ ( ◡ 𝑅 “ { 𝑋 } ) ↔ 𝑌 𝑅 𝑋 ) ) | |
4 | 3 | anbi2d | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( ( 𝑌 ∈ 𝐴 ∧ 𝑌 ∈ ( ◡ 𝑅 “ { 𝑋 } ) ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) |
5 | 2 4 | bitrid | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ) → ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) ) |