Metamath Proof Explorer


Theorem elrels2

Description: The element of the relations class ( df-rels ) and the relation predicate ( df-rel ) are the same when R is a set. (Contributed by Peter Mazsa, 14-Jun-2018)

Ref Expression
Assertion elrels2 ( 𝑅𝑉 → ( 𝑅 ∈ Rels ↔ 𝑅 ⊆ ( V × V ) ) )

Proof

Step Hyp Ref Expression
1 df-rels Rels = 𝒫 ( V × V )
2 1 eleq2i ( 𝑅 ∈ Rels ↔ 𝑅 ∈ 𝒫 ( V × V ) )
3 elpwg ( 𝑅𝑉 → ( 𝑅 ∈ 𝒫 ( V × V ) ↔ 𝑅 ⊆ ( V × V ) ) )
4 2 3 syl5bb ( 𝑅𝑉 → ( 𝑅 ∈ Rels ↔ 𝑅 ⊆ ( V × V ) ) )