| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 2 |
|
idn3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) |
| 3 |
|
en3lplem1VD |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 4 |
1 2 3
|
e13 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐴 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 5 |
4
|
in3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 6 |
|
3anrot |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) |
| 7 |
1 6
|
e1bi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) |
| 8 |
|
idn3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐵 ▶ 𝑥 = 𝐵 ) |
| 9 |
|
en3lplem1VD |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 = 𝐵 → ∃ 𝑦 ( 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 10 |
7 8 9
|
e13 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐵 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 11 |
|
tprot |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } |
| 12 |
11
|
eleq2i |
⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ) |
| 13 |
12
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 14 |
13
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 15 |
10 14
|
e3bir |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐵 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 16 |
15
|
in3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( 𝑥 = 𝐵 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 17 |
|
jao |
⊢ ( ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑥 = 𝐵 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) ) |
| 18 |
5 16 17
|
e22 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 19 |
|
3anrot |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) |
| 20 |
1 19
|
e1bir |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
| 21 |
|
idn3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐶 ▶ 𝑥 = 𝐶 ) |
| 22 |
|
en3lplem1VD |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝑥 = 𝐶 → ∃ 𝑦 ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 23 |
20 21 22
|
e13 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐶 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 24 |
|
tprot |
⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } |
| 25 |
24
|
eleq2i |
⊢ ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ↔ 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 26 |
25
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 27 |
26
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 28 |
23 27
|
e3bi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐶 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 29 |
28
|
in3 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( 𝑥 = 𝐶 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 30 |
|
idn2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 31 |
|
dftp2 |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } |
| 32 |
31
|
eleq2i |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ) |
| 33 |
30 32
|
e2bi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ) |
| 34 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ) |
| 35 |
33 34
|
e2bi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ) |
| 36 |
|
df-3or |
⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ↔ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) ) |
| 37 |
35 36
|
e2bi |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) ) |
| 38 |
|
jao |
⊢ ( ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑥 = 𝐶 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) → ( ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) ) |
| 39 |
18 29 37 38
|
e222 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 40 |
39
|
in2 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 41 |
40
|
in1 |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |