Metamath Proof Explorer


Theorem eqab2

Description: Implication of a class abstraction. (Contributed by Peter Mazsa, 16-Apr-2019)

Ref Expression
Assertion eqab2 ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ∀ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 biimp ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜑 ) )
2 1 alimi ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
4 2 3 sylibr ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ∀ 𝑥𝐴 𝜑 )