Description: Implication of a class abstraction. (Contributed by Peter Mazsa, 16-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqab2 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | ⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 2 | 1 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝜑 ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |