Description: Implication of a class abstraction. (Contributed by Peter Mazsa, 16-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqab2 | |- ( A. x ( x e. A <-> ph ) -> A. x e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | |- ( ( x e. A <-> ph ) -> ( x e. A -> ph ) ) |
|
| 2 | 1 | alimi | |- ( A. x ( x e. A <-> ph ) -> A. x ( x e. A -> ph ) ) |
| 3 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 4 | 2 3 | sylibr | |- ( A. x ( x e. A <-> ph ) -> A. x e. A ph ) |