Metamath Proof Explorer


Theorem eqab2

Description: Implication of a class abstraction. (Contributed by Peter Mazsa, 16-Apr-2019)

Ref Expression
Assertion eqab2
|- ( A. x ( x e. A <-> ph ) -> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 biimp
 |-  ( ( x e. A <-> ph ) -> ( x e. A -> ph ) )
2 1 alimi
 |-  ( A. x ( x e. A <-> ph ) -> A. x ( x e. A -> ph ) )
3 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
4 2 3 sylibr
 |-  ( A. x ( x e. A <-> ph ) -> A. x e. A ph )