Step |
Hyp |
Ref |
Expression |
1 |
|
eqfnfv2f.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
eqfnfv2f.2 |
⊢ Ⅎ 𝑥 𝐺 |
3 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
5 |
1 4
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) |
6 |
2 4
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑧 ) |
7 |
5 6
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) |
9 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑥 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) |
11 |
9 10
|
eqeq12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
12 |
7 8 11
|
cbvralw |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝐹 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
13 |
3 12
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |