Metamath Proof Explorer


Theorem eqfnfv2f

Description: Equality of functions is determined by their values. Special case of Exercise 4 of TakeutiZaring p. 28 (with domain equality omitted). This version of eqfnfv uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004)

Ref Expression
Hypotheses eqfnfv2f.1 _xF
eqfnfv2f.2 _xG
Assertion eqfnfv2f FFnAGFnAF=GxAFx=Gx

Proof

Step Hyp Ref Expression
1 eqfnfv2f.1 _xF
2 eqfnfv2f.2 _xG
3 eqfnfv FFnAGFnAF=GzAFz=Gz
4 nfcv _xz
5 1 4 nffv _xFz
6 2 4 nffv _xGz
7 5 6 nfeq xFz=Gz
8 nfv zFx=Gx
9 fveq2 z=xFz=Fx
10 fveq2 z=xGz=Gx
11 9 10 eqeq12d z=xFz=GzFx=Gx
12 7 8 11 cbvralw zAFz=GzxAFx=Gx
13 3 12 bitrdi FFnAGFnAF=GxAFx=Gx