| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqfnfv2 | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵 )  →  ( 𝐹  =  𝐺  ↔  ( 𝐴  =  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 2 |  | eqss | ⊢ ( 𝐴  =  𝐵  ↔  ( 𝐴  ⊆  𝐵  ∧  𝐵  ⊆  𝐴 ) ) | 
						
							| 3 | 2 | biancomi | ⊢ ( 𝐴  =  𝐵  ↔  ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐵 ) ) | 
						
							| 4 | 3 | anbi1i | ⊢ ( ( 𝐴  =  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) )  ↔  ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 5 |  | anass | ⊢ ( ( ( 𝐵  ⊆  𝐴  ∧  𝐴  ⊆  𝐵 )  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) )  ↔  ( 𝐵  ⊆  𝐴  ∧  ( 𝐴  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 6 |  | dfss3 | ⊢ ( 𝐴  ⊆  𝐵  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵 ) | 
						
							| 7 | 6 | anbi1i | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 8 |  | r19.26 | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑥  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 9 | 7 8 | bitr4i | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑥  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 10 | 9 | anbi2i | ⊢ ( ( 𝐵  ⊆  𝐴  ∧  ( 𝐴  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) )  ↔  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 11 | 4 5 10 | 3bitri | ⊢ ( ( 𝐴  =  𝐵  ∧  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) )  ↔  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 12 | 1 11 | bitrdi | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐵 )  →  ( 𝐹  =  𝐺  ↔  ( 𝐵  ⊆  𝐴  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑥  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) ) ) |