| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqfnfv2 |  |-  ( ( F Fn A /\ G Fn B ) -> ( F = G <-> ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) ) | 
						
							| 2 |  | eqss |  |-  ( A = B <-> ( A C_ B /\ B C_ A ) ) | 
						
							| 3 | 2 | biancomi |  |-  ( A = B <-> ( B C_ A /\ A C_ B ) ) | 
						
							| 4 | 3 | anbi1i |  |-  ( ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( ( B C_ A /\ A C_ B ) /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) | 
						
							| 5 |  | anass |  |-  ( ( ( B C_ A /\ A C_ B ) /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( B C_ A /\ ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) ) | 
						
							| 6 |  | dfss3 |  |-  ( A C_ B <-> A. x e. A x e. B ) | 
						
							| 7 | 6 | anbi1i |  |-  ( ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( A. x e. A x e. B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) | 
						
							| 8 |  | r19.26 |  |-  ( A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) <-> ( A. x e. A x e. B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) | 
						
							| 9 | 7 8 | bitr4i |  |-  ( ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) | 
						
							| 10 | 9 | anbi2i |  |-  ( ( B C_ A /\ ( A C_ B /\ A. x e. A ( F ` x ) = ( G ` x ) ) ) <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) | 
						
							| 11 | 4 5 10 | 3bitri |  |-  ( ( A = B /\ A. x e. A ( F ` x ) = ( G ` x ) ) <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) | 
						
							| 12 | 1 11 | bitrdi |  |-  ( ( F Fn A /\ G Fn B ) -> ( F = G <-> ( B C_ A /\ A. x e. A ( x e. B /\ ( F ` x ) = ( G ` x ) ) ) ) ) |