| Step | Hyp | Ref | Expression | 
						
							| 1 |  | equivcmet.1 | ⊢ ( 𝜑  →  𝐶  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 2 |  | equivcmet.2 | ⊢ ( 𝜑  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 3 |  | equivcmet.3 | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 4 |  | equivcmet.4 | ⊢ ( 𝜑  →  𝑆  ∈  ℝ+ ) | 
						
							| 5 |  | equivcmet.5 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 𝐶 𝑦 )  ≤  ( 𝑅  ·  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 6 |  | equivcmet.6 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 𝐷 𝑦 )  ≤  ( 𝑆  ·  ( 𝑥 𝐶 𝑦 ) ) ) | 
						
							| 7 | 1 2 | 2thd | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( Met ‘ 𝑋 )  ↔  𝐷  ∈  ( Met ‘ 𝑋 ) ) ) | 
						
							| 8 | 2 1 4 6 | equivcfil | ⊢ ( 𝜑  →  ( CauFil ‘ 𝐶 )  ⊆  ( CauFil ‘ 𝐷 ) ) | 
						
							| 9 | 1 2 3 5 | equivcfil | ⊢ ( 𝜑  →  ( CauFil ‘ 𝐷 )  ⊆  ( CauFil ‘ 𝐶 ) ) | 
						
							| 10 | 8 9 | eqssd | ⊢ ( 𝜑  →  ( CauFil ‘ 𝐶 )  =  ( CauFil ‘ 𝐷 ) ) | 
						
							| 11 |  | eqid | ⊢ ( MetOpen ‘ 𝐶 )  =  ( MetOpen ‘ 𝐶 ) | 
						
							| 12 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 13 | 11 12 1 2 3 5 | metss2 | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐶 )  ⊆  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 14 | 12 11 2 1 4 6 | metss2 | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐷 )  ⊆  ( MetOpen ‘ 𝐶 ) ) | 
						
							| 15 | 13 14 | eqssd | ⊢ ( 𝜑  →  ( MetOpen ‘ 𝐶 )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝜑  →  ( ( MetOpen ‘ 𝐶 )  fLim  𝑓 )  =  ( ( MetOpen ‘ 𝐷 )  fLim  𝑓 ) ) | 
						
							| 17 | 16 | neeq1d | ⊢ ( 𝜑  →  ( ( ( MetOpen ‘ 𝐶 )  fLim  𝑓 )  ≠  ∅  ↔  ( ( MetOpen ‘ 𝐷 )  fLim  𝑓 )  ≠  ∅ ) ) | 
						
							| 18 | 10 17 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑓  ∈  ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 )  fLim  𝑓 )  ≠  ∅  ↔  ∀ 𝑓  ∈  ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 )  fLim  𝑓 )  ≠  ∅ ) ) | 
						
							| 19 | 7 18 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐶  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 )  fLim  𝑓 )  ≠  ∅ )  ↔  ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 )  fLim  𝑓 )  ≠  ∅ ) ) ) | 
						
							| 20 | 11 | iscmet | ⊢ ( 𝐶  ∈  ( CMet ‘ 𝑋 )  ↔  ( 𝐶  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( CauFil ‘ 𝐶 ) ( ( MetOpen ‘ 𝐶 )  fLim  𝑓 )  ≠  ∅ ) ) | 
						
							| 21 | 12 | iscmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ↔  ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑓  ∈  ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 )  fLim  𝑓 )  ≠  ∅ ) ) | 
						
							| 22 | 19 20 21 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( CMet ‘ 𝑋 )  ↔  𝐷  ∈  ( CMet ‘ 𝑋 ) ) ) |