| Step | Hyp | Ref | Expression | 
						
							| 1 |  | equivcmet.1 |  |-  ( ph -> C e. ( Met ` X ) ) | 
						
							| 2 |  | equivcmet.2 |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 3 |  | equivcmet.3 |  |-  ( ph -> R e. RR+ ) | 
						
							| 4 |  | equivcmet.4 |  |-  ( ph -> S e. RR+ ) | 
						
							| 5 |  | equivcmet.5 |  |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) | 
						
							| 6 |  | equivcmet.6 |  |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x D y ) <_ ( S x. ( x C y ) ) ) | 
						
							| 7 | 1 2 | 2thd |  |-  ( ph -> ( C e. ( Met ` X ) <-> D e. ( Met ` X ) ) ) | 
						
							| 8 | 2 1 4 6 | equivcfil |  |-  ( ph -> ( CauFil ` C ) C_ ( CauFil ` D ) ) | 
						
							| 9 | 1 2 3 5 | equivcfil |  |-  ( ph -> ( CauFil ` D ) C_ ( CauFil ` C ) ) | 
						
							| 10 | 8 9 | eqssd |  |-  ( ph -> ( CauFil ` C ) = ( CauFil ` D ) ) | 
						
							| 11 |  | eqid |  |-  ( MetOpen ` C ) = ( MetOpen ` C ) | 
						
							| 12 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 13 | 11 12 1 2 3 5 | metss2 |  |-  ( ph -> ( MetOpen ` C ) C_ ( MetOpen ` D ) ) | 
						
							| 14 | 12 11 2 1 4 6 | metss2 |  |-  ( ph -> ( MetOpen ` D ) C_ ( MetOpen ` C ) ) | 
						
							| 15 | 13 14 | eqssd |  |-  ( ph -> ( MetOpen ` C ) = ( MetOpen ` D ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ph -> ( ( MetOpen ` C ) fLim f ) = ( ( MetOpen ` D ) fLim f ) ) | 
						
							| 17 | 16 | neeq1d |  |-  ( ph -> ( ( ( MetOpen ` C ) fLim f ) =/= (/) <-> ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) | 
						
							| 18 | 10 17 | raleqbidv |  |-  ( ph -> ( A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) <-> A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) | 
						
							| 19 | 7 18 | anbi12d |  |-  ( ph -> ( ( C e. ( Met ` X ) /\ A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) ) | 
						
							| 20 | 11 | iscmet |  |-  ( C e. ( CMet ` X ) <-> ( C e. ( Met ` X ) /\ A. f e. ( CauFil ` C ) ( ( MetOpen ` C ) fLim f ) =/= (/) ) ) | 
						
							| 21 | 12 | iscmet |  |-  ( D e. ( CMet ` X ) <-> ( D e. ( Met ` X ) /\ A. f e. ( CauFil ` D ) ( ( MetOpen ` D ) fLim f ) =/= (/) ) ) | 
						
							| 22 | 19 20 21 | 3bitr4g |  |-  ( ph -> ( C e. ( CMet ` X ) <-> D e. ( CMet ` X ) ) ) |