| Step | Hyp | Ref | Expression | 
						
							| 1 |  | equivcau.1 |  |-  ( ph -> C e. ( Met ` X ) ) | 
						
							| 2 |  | equivcau.2 |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 3 |  | equivcau.3 |  |-  ( ph -> R e. RR+ ) | 
						
							| 4 |  | equivcau.4 |  |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( x C y ) <_ ( R x. ( x D y ) ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> r e. RR+ ) | 
						
							| 6 | 3 | ad2antrr |  |-  ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> R e. RR+ ) | 
						
							| 7 | 5 6 | rpdivcld |  |-  ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> ( r / R ) e. RR+ ) | 
						
							| 8 |  | oveq2 |  |-  ( s = ( r / R ) -> ( x ( ball ` D ) s ) = ( x ( ball ` D ) ( r / R ) ) ) | 
						
							| 9 | 8 | eleq1d |  |-  ( s = ( r / R ) -> ( ( x ( ball ` D ) s ) e. f <-> ( x ( ball ` D ) ( r / R ) ) e. f ) ) | 
						
							| 10 | 9 | rexbidv |  |-  ( s = ( r / R ) -> ( E. x e. X ( x ( ball ` D ) s ) e. f <-> E. x e. X ( x ( ball ` D ) ( r / R ) ) e. f ) ) | 
						
							| 11 | 10 | rspcv |  |-  ( ( r / R ) e. RR+ -> ( A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f -> E. x e. X ( x ( ball ` D ) ( r / R ) ) e. f ) ) | 
						
							| 12 | 7 11 | syl |  |-  ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> ( A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f -> E. x e. X ( x ( ball ` D ) ( r / R ) ) e. f ) ) | 
						
							| 13 |  | simpllr |  |-  ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> f e. ( Fil ` X ) ) | 
						
							| 14 |  | eqid |  |-  ( MetOpen ` C ) = ( MetOpen ` C ) | 
						
							| 15 |  | eqid |  |-  ( MetOpen ` D ) = ( MetOpen ` D ) | 
						
							| 16 | 14 15 1 2 3 4 | metss2lem |  |-  ( ( ph /\ ( x e. X /\ r e. RR+ ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) | 
						
							| 17 | 16 | ancom2s |  |-  ( ( ph /\ ( r e. RR+ /\ x e. X ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) | 
						
							| 18 | 17 | adantlr |  |-  ( ( ( ph /\ f e. ( Fil ` X ) ) /\ ( r e. RR+ /\ x e. X ) ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) | 
						
							| 19 | 18 | anassrs |  |-  ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) | 
						
							| 20 | 1 | ad3antrrr |  |-  ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> C e. ( Met ` X ) ) | 
						
							| 21 |  | metxmet |  |-  ( C e. ( Met ` X ) -> C e. ( *Met ` X ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> C e. ( *Met ` X ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> x e. X ) | 
						
							| 24 |  | rpxr |  |-  ( r e. RR+ -> r e. RR* ) | 
						
							| 25 | 24 | ad2antlr |  |-  ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> r e. RR* ) | 
						
							| 26 |  | blssm |  |-  ( ( C e. ( *Met ` X ) /\ x e. X /\ r e. RR* ) -> ( x ( ball ` C ) r ) C_ X ) | 
						
							| 27 | 22 23 25 26 | syl3anc |  |-  ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> ( x ( ball ` C ) r ) C_ X ) | 
						
							| 28 |  | filss |  |-  ( ( f e. ( Fil ` X ) /\ ( ( x ( ball ` D ) ( r / R ) ) e. f /\ ( x ( ball ` C ) r ) C_ X /\ ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) ) ) -> ( x ( ball ` C ) r ) e. f ) | 
						
							| 29 | 28 | 3exp2 |  |-  ( f e. ( Fil ` X ) -> ( ( x ( ball ` D ) ( r / R ) ) e. f -> ( ( x ( ball ` C ) r ) C_ X -> ( ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) -> ( x ( ball ` C ) r ) e. f ) ) ) ) | 
						
							| 30 | 29 | com24 |  |-  ( f e. ( Fil ` X ) -> ( ( x ( ball ` D ) ( r / R ) ) C_ ( x ( ball ` C ) r ) -> ( ( x ( ball ` C ) r ) C_ X -> ( ( x ( ball ` D ) ( r / R ) ) e. f -> ( x ( ball ` C ) r ) e. f ) ) ) ) | 
						
							| 31 | 13 19 27 30 | syl3c |  |-  ( ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) /\ x e. X ) -> ( ( x ( ball ` D ) ( r / R ) ) e. f -> ( x ( ball ` C ) r ) e. f ) ) | 
						
							| 32 | 31 | reximdva |  |-  ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> ( E. x e. X ( x ( ball ` D ) ( r / R ) ) e. f -> E. x e. X ( x ( ball ` C ) r ) e. f ) ) | 
						
							| 33 | 12 32 | syld |  |-  ( ( ( ph /\ f e. ( Fil ` X ) ) /\ r e. RR+ ) -> ( A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f -> E. x e. X ( x ( ball ` C ) r ) e. f ) ) | 
						
							| 34 | 33 | ralrimdva |  |-  ( ( ph /\ f e. ( Fil ` X ) ) -> ( A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f -> A. r e. RR+ E. x e. X ( x ( ball ` C ) r ) e. f ) ) | 
						
							| 35 | 34 | imdistanda |  |-  ( ph -> ( ( f e. ( Fil ` X ) /\ A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f ) -> ( f e. ( Fil ` X ) /\ A. r e. RR+ E. x e. X ( x ( ball ` C ) r ) e. f ) ) ) | 
						
							| 36 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 37 |  | iscfil3 |  |-  ( D e. ( *Met ` X ) -> ( f e. ( CauFil ` D ) <-> ( f e. ( Fil ` X ) /\ A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f ) ) ) | 
						
							| 38 | 2 36 37 | 3syl |  |-  ( ph -> ( f e. ( CauFil ` D ) <-> ( f e. ( Fil ` X ) /\ A. s e. RR+ E. x e. X ( x ( ball ` D ) s ) e. f ) ) ) | 
						
							| 39 |  | iscfil3 |  |-  ( C e. ( *Met ` X ) -> ( f e. ( CauFil ` C ) <-> ( f e. ( Fil ` X ) /\ A. r e. RR+ E. x e. X ( x ( ball ` C ) r ) e. f ) ) ) | 
						
							| 40 | 1 21 39 | 3syl |  |-  ( ph -> ( f e. ( CauFil ` C ) <-> ( f e. ( Fil ` X ) /\ A. r e. RR+ E. x e. X ( x ( ball ` C ) r ) e. f ) ) ) | 
						
							| 41 | 35 38 40 | 3imtr4d |  |-  ( ph -> ( f e. ( CauFil ` D ) -> f e. ( CauFil ` C ) ) ) | 
						
							| 42 | 41 | ssrdv |  |-  ( ph -> ( CauFil ` D ) C_ ( CauFil ` C ) ) |