| Step | Hyp | Ref | Expression | 
						
							| 1 |  | equivcau.1 |  | 
						
							| 2 |  | equivcau.2 |  | 
						
							| 3 |  | equivcau.3 |  | 
						
							| 4 |  | equivcau.4 |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 | 3 | ad2antrr |  | 
						
							| 7 | 5 6 | rpdivcld |  | 
						
							| 8 |  | oveq2 |  | 
						
							| 9 | 8 | eleq1d |  | 
						
							| 10 | 9 | rexbidv |  | 
						
							| 11 | 10 | rspcv |  | 
						
							| 12 | 7 11 | syl |  | 
						
							| 13 |  | simpllr |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 14 15 1 2 3 4 | metss2lem |  | 
						
							| 17 | 16 | ancom2s |  | 
						
							| 18 | 17 | adantlr |  | 
						
							| 19 | 18 | anassrs |  | 
						
							| 20 | 1 | ad3antrrr |  | 
						
							| 21 |  | metxmet |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 |  | rpxr |  | 
						
							| 25 | 24 | ad2antlr |  | 
						
							| 26 |  | blssm |  | 
						
							| 27 | 22 23 25 26 | syl3anc |  | 
						
							| 28 |  | filss |  | 
						
							| 29 | 28 | 3exp2 |  | 
						
							| 30 | 29 | com24 |  | 
						
							| 31 | 13 19 27 30 | syl3c |  | 
						
							| 32 | 31 | reximdva |  | 
						
							| 33 | 12 32 | syld |  | 
						
							| 34 | 33 | ralrimdva |  | 
						
							| 35 | 34 | imdistanda |  | 
						
							| 36 |  | metxmet |  | 
						
							| 37 |  | iscfil3 |  | 
						
							| 38 | 2 36 37 | 3syl |  | 
						
							| 39 |  | iscfil3 |  | 
						
							| 40 | 1 21 39 | 3syl |  | 
						
							| 41 | 35 38 40 | 3imtr4d |  | 
						
							| 42 | 41 | ssrdv |  |