Metamath Proof Explorer


Theorem iscfil3

Description: A filter is Cauchy iff it contains a ball of any chosen size. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion iscfil3 D∞MetXFCauFilDFFilXr+xXxballDrF

Proof

Step Hyp Ref Expression
1 cfilfil D∞MetXFCauFilDFFilX
2 cfil3i D∞MetXFCauFilDr+xXxballDrF
3 2 3expa D∞MetXFCauFilDr+xXxballDrF
4 3 ralrimiva D∞MetXFCauFilDr+xXxballDrF
5 1 4 jca D∞MetXFCauFilDFFilXr+xXxballDrF
6 simprl D∞MetXFFilXr+xXxballDrFFFilX
7 rphalfcl s+s2+
8 7 adantl D∞MetXFFilXs+s2+
9 oveq2 r=s2xballDr=xballDs2
10 9 eleq1d r=s2xballDrFxballDs2F
11 10 rexbidv r=s2xXxballDrFxXxballDs2F
12 11 rspcv s2+r+xXxballDrFxXxballDs2F
13 8 12 syl D∞MetXFFilXs+r+xXxballDrFxXxballDs2F
14 simprr D∞MetXFFilXs+xXxballDs2FxballDs2F
15 simp-4l D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2D∞MetX
16 simplrl D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2xX
17 simpllr D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2s+
18 17 rpred D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2s
19 simprl D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2uxballDs2
20 blhalf D∞MetXxXsuxballDs2xballDs2uballDs
21 15 16 18 19 20 syl22anc D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2xballDs2uballDs
22 simprr D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2vxballDs2
23 21 22 sseldd D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2vuballDs
24 17 rpxrd D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2s*
25 17 7 syl D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2s2+
26 25 rpxrd D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2s2*
27 blssm D∞MetXxXs2*xballDs2X
28 15 16 26 27 syl3anc D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2xballDs2X
29 28 19 sseldd D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2uX
30 28 22 sseldd D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2vX
31 elbl2 D∞MetXs*uXvXvuballDsuDv<s
32 15 24 29 30 31 syl22anc D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2vuballDsuDv<s
33 23 32 mpbid D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2uDv<s
34 33 ralrimivva D∞MetXFFilXs+xXxballDs2FuxballDs2vxballDs2uDv<s
35 raleq y=xballDs2vyuDv<svxballDs2uDv<s
36 35 raleqbi1dv y=xballDs2uyvyuDv<suxballDs2vxballDs2uDv<s
37 36 rspcev xballDs2FuxballDs2vxballDs2uDv<syFuyvyuDv<s
38 14 34 37 syl2anc D∞MetXFFilXs+xXxballDs2FyFuyvyuDv<s
39 38 rexlimdvaa D∞MetXFFilXs+xXxballDs2FyFuyvyuDv<s
40 13 39 syld D∞MetXFFilXs+r+xXxballDrFyFuyvyuDv<s
41 40 ralrimdva D∞MetXFFilXr+xXxballDrFs+yFuyvyuDv<s
42 41 impr D∞MetXFFilXr+xXxballDrFs+yFuyvyuDv<s
43 iscfil2 D∞MetXFCauFilDFFilXs+yFuyvyuDv<s
44 43 adantr D∞MetXFFilXr+xXxballDrFFCauFilDFFilXs+yFuyvyuDv<s
45 6 42 44 mpbir2and D∞MetXFFilXr+xXxballDrFFCauFilD
46 5 45 impbida D∞MetXFCauFilDFFilXr+xXxballDrF