Metamath Proof Explorer


Theorem iscfil3

Description: A filter is Cauchy iff it contains a ball of any chosen size. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion iscfil3 D ∞Met X F CauFil D F Fil X r + x X x ball D r F

Proof

Step Hyp Ref Expression
1 cfilfil D ∞Met X F CauFil D F Fil X
2 cfil3i D ∞Met X F CauFil D r + x X x ball D r F
3 2 3expa D ∞Met X F CauFil D r + x X x ball D r F
4 3 ralrimiva D ∞Met X F CauFil D r + x X x ball D r F
5 1 4 jca D ∞Met X F CauFil D F Fil X r + x X x ball D r F
6 simprl D ∞Met X F Fil X r + x X x ball D r F F Fil X
7 rphalfcl s + s 2 +
8 7 adantl D ∞Met X F Fil X s + s 2 +
9 oveq2 r = s 2 x ball D r = x ball D s 2
10 9 eleq1d r = s 2 x ball D r F x ball D s 2 F
11 10 rexbidv r = s 2 x X x ball D r F x X x ball D s 2 F
12 11 rspcv s 2 + r + x X x ball D r F x X x ball D s 2 F
13 8 12 syl D ∞Met X F Fil X s + r + x X x ball D r F x X x ball D s 2 F
14 simprr D ∞Met X F Fil X s + x X x ball D s 2 F x ball D s 2 F
15 simp-4l D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 D ∞Met X
16 simplrl D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 x X
17 simpllr D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 s +
18 17 rpred D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 s
19 simprl D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 u x ball D s 2
20 blhalf D ∞Met X x X s u x ball D s 2 x ball D s 2 u ball D s
21 15 16 18 19 20 syl22anc D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 x ball D s 2 u ball D s
22 simprr D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 v x ball D s 2
23 21 22 sseldd D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 v u ball D s
24 17 rpxrd D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 s *
25 17 7 syl D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 s 2 +
26 25 rpxrd D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 s 2 *
27 blssm D ∞Met X x X s 2 * x ball D s 2 X
28 15 16 26 27 syl3anc D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 x ball D s 2 X
29 28 19 sseldd D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 u X
30 28 22 sseldd D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 v X
31 elbl2 D ∞Met X s * u X v X v u ball D s u D v < s
32 15 24 29 30 31 syl22anc D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 v u ball D s u D v < s
33 23 32 mpbid D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 u D v < s
34 33 ralrimivva D ∞Met X F Fil X s + x X x ball D s 2 F u x ball D s 2 v x ball D s 2 u D v < s
35 raleq y = x ball D s 2 v y u D v < s v x ball D s 2 u D v < s
36 35 raleqbi1dv y = x ball D s 2 u y v y u D v < s u x ball D s 2 v x ball D s 2 u D v < s
37 36 rspcev x ball D s 2 F u x ball D s 2 v x ball D s 2 u D v < s y F u y v y u D v < s
38 14 34 37 syl2anc D ∞Met X F Fil X s + x X x ball D s 2 F y F u y v y u D v < s
39 38 rexlimdvaa D ∞Met X F Fil X s + x X x ball D s 2 F y F u y v y u D v < s
40 13 39 syld D ∞Met X F Fil X s + r + x X x ball D r F y F u y v y u D v < s
41 40 ralrimdva D ∞Met X F Fil X r + x X x ball D r F s + y F u y v y u D v < s
42 41 impr D ∞Met X F Fil X r + x X x ball D r F s + y F u y v y u D v < s
43 iscfil2 D ∞Met X F CauFil D F Fil X s + y F u y v y u D v < s
44 43 adantr D ∞Met X F Fil X r + x X x ball D r F F CauFil D F Fil X s + y F u y v y u D v < s
45 6 42 44 mpbir2and D ∞Met X F Fil X r + x X x ball D r F F CauFil D
46 5 45 impbida D ∞Met X F CauFil D F Fil X r + x X x ball D r F