Description: Replace ax-10 , ax-11 , ax-12 in euabsn2 with substitution hypotheses. (Contributed by SN, 27-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | absnw.y | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
euabsn2w.z | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) ) | ||
Assertion | euabsn2w | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absnw.y | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | euabsn2w.z | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜃 ) ) | |
3 | 2 1 | eu6w | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
4 | 2 | absnw | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
5 | 4 | exbii | ⊢ ( ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) ) |
6 | 3 5 | bitr4i | ⊢ ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ) |