Metamath Proof Explorer


Theorem euabsn2w

Description: Replace ax-10 , ax-11 , ax-12 in euabsn2 with substitution hypotheses. (Contributed by SN, 27-May-2025)

Ref Expression
Hypotheses absnw.y ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
euabsn2w.z ( 𝑥 = 𝑧 → ( 𝜑𝜃 ) )
Assertion euabsn2w ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )

Proof

Step Hyp Ref Expression
1 absnw.y ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 euabsn2w.z ( 𝑥 = 𝑧 → ( 𝜑𝜃 ) )
3 2 1 eu6w ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
4 2 absnw ( { 𝑥𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
5 4 exbii ( ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
6 3 5 bitr4i ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )