Metamath Proof Explorer


Theorem euabsn2w

Description: Replace ax-10 , ax-11 , ax-12 in euabsn2 with substitution hypotheses. (Contributed by SN, 27-May-2025)

Ref Expression
Hypotheses absnw.y
|- ( x = y -> ( ph <-> ps ) )
euabsn2w.z
|- ( x = z -> ( ph <-> th ) )
Assertion euabsn2w
|- ( E! x ph <-> E. y { x | ph } = { y } )

Proof

Step Hyp Ref Expression
1 absnw.y
 |-  ( x = y -> ( ph <-> ps ) )
2 euabsn2w.z
 |-  ( x = z -> ( ph <-> th ) )
3 2 1 eu6w
 |-  ( E! x ph <-> E. y A. x ( ph <-> x = y ) )
4 2 absnw
 |-  ( { x | ph } = { y } <-> A. x ( ph <-> x = y ) )
5 4 exbii
 |-  ( E. y { x | ph } = { y } <-> E. y A. x ( ph <-> x = y ) )
6 3 5 bitr4i
 |-  ( E! x ph <-> E. y { x | ph } = { y } )