Description: Replace ax-10 , ax-11 , ax-12 in absn with a substitution hypothesis. (Contributed by SN, 27-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | absnw.y | |- ( x = y -> ( ph <-> ps ) ) |
|
Assertion | absnw | |- ( { x | ph } = { Y } <-> A. x ( ph <-> x = Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absnw.y | |- ( x = y -> ( ph <-> ps ) ) |
|
2 | df-sn | |- { Y } = { x | x = Y } |
|
3 | 2 | eqeq2i | |- ( { x | ph } = { Y } <-> { x | ph } = { x | x = Y } ) |
4 | eqeq1 | |- ( x = y -> ( x = Y <-> y = Y ) ) |
|
5 | 1 4 | abbibw | |- ( { x | ph } = { x | x = Y } <-> A. x ( ph <-> x = Y ) ) |
6 | 3 5 | bitri | |- ( { x | ph } = { Y } <-> A. x ( ph <-> x = Y ) ) |