Metamath Proof Explorer


Theorem absnw

Description: Replace ax-10 , ax-11 , ax-12 in absn with a substitution hypothesis. (Contributed by SN, 27-May-2025)

Ref Expression
Hypothesis absnw.y
|- ( x = y -> ( ph <-> ps ) )
Assertion absnw
|- ( { x | ph } = { Y } <-> A. x ( ph <-> x = Y ) )

Proof

Step Hyp Ref Expression
1 absnw.y
 |-  ( x = y -> ( ph <-> ps ) )
2 df-sn
 |-  { Y } = { x | x = Y }
3 2 eqeq2i
 |-  ( { x | ph } = { Y } <-> { x | ph } = { x | x = Y } )
4 eqeq1
 |-  ( x = y -> ( x = Y <-> y = Y ) )
5 1 4 abbibw
 |-  ( { x | ph } = { x | x = Y } <-> A. x ( ph <-> x = Y ) )
6 3 5 bitri
 |-  ( { x | ph } = { Y } <-> A. x ( ph <-> x = Y ) )