Metamath Proof Explorer


Theorem absnw

Description: Replace ax-10 , ax-11 , ax-12 in absn with a substitution hypothesis. (Contributed by SN, 27-May-2025)

Ref Expression
Hypothesis absnw.y x = y φ ψ
Assertion absnw x | φ = Y x φ x = Y

Proof

Step Hyp Ref Expression
1 absnw.y x = y φ ψ
2 df-sn Y = x | x = Y
3 2 eqeq2i x | φ = Y x | φ = x | x = Y
4 eqeq1 x = y x = Y y = Y
5 1 4 abbibw x | φ = x | x = Y x φ x = Y
6 3 5 bitri x | φ = Y x φ x = Y